First Insights into Human Fingertip Regeneration by Echo-Doppler Imaging and Wound Microenvironment Assessment

Paris Jafari, Camillo Muller, Anthony Grognuz, Lee Ann Applegate, Wassim Raffoul, Pietro G di Summa, Sébastien Durand, Paris Jafari, Camillo Muller, Anthony Grognuz, Lee Ann Applegate, Wassim Raffoul, Pietro G di Summa, Sébastien Durand

Abstract

Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss from a wound repair process towards regeneration. When analyzing by Immunoassay the wound exudate from occlusive dressings, the concentrations of brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were higher in fingertip exudates than in burn wounds (used as controls for wound repair versus regeneration). Vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor (PDGF) were highly expressed in both samples in comparable levels. In our study, pro-inflammatory cytokines were relatively higher expressed in regenerative fingertips than in the burn wound exudates while chemokines were present in lower levels. Functional, vascular and mechanical properties of the regenerated fingertips were analyzed three months after trauma and the data were compared to the corresponding fingertip on the collateral uninjured side. While sensory recovery and morphology (pulp thickness and texture) were similar to uninjured sides, mechanical parameters (elasticity, vascularization) were increased in the regenerated fingertips. Further studies should be done to clarify the importance of inflammatory cells, immunity and growth factors in determining the outcome of the regenerative process and its influence on the clinical outcome.

Keywords: Doppler imaging; angiogenesis; clinical assessment; fingertip regeneration.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Representative images of amputated fingers. (a) At admission and before the application of occlusive dressing; (b) Three months post-trauma and at clinical and morphological evaluation.
Figure 2
Figure 2
Representative echo-doppler images of regenerated (upper row) and un-injured collateral (lower row) fingertips. (a) Ultrasound b-mode imaging for the measurement of the pulp thickness; (b) b-mode imaging with superimposed share wave mapping for the measurement of the pulp elasticity. The white circle has a diameter of 5 mm; (c) b-mode imaging with superimposed power Doppler for the measurement of vascularity.
Figure 3
Figure 3
Morphologic, mechanical and vascular characteristics of regenerated fingertips compared to control collateral healthy finger. (a) Soft tissue coverage, (b) Elasticity, (c) vascularization. Data are presented as mean ± SD for five patients (* p < 0.05).
Figure 4
Figure 4
Measured levels of (a) growth factors, (b) cytokines and chemokines in fingertip exudate samples (FT) and burn wound exudate samples (B), seven days post-trauma.

References

    1. Douglas B.S. Conservative management of guillotine amputation of the finger in children. Aust. Paediatr. J. 1972;8:86–89. doi: 10.1111/j.1440-1754.1972.tb01793.x.
    1. Illingworth C.M. Trapped fingers and amputated finger tips in children. J. Pediatr. Surg. 1974;9:853–858. doi: 10.1016/S0022-3468(74)80220-4.
    1. Takeo M., Chou W.C., Sun Q., Lee W., Rabbani P., Loomis C., Taketo M.M., Ito M. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature. 2013;499:228–232. doi: 10.1038/nature12214.
    1. Yokoyama H., Ogino H., Stoick-Cooper C.L., Grainger R.M., Moon R.T. Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Dev. Biol. 2007;306:170–178. doi: 10.1016/j.ydbio.2007.03.014.
    1. Yamada Y., Yokoyama S., Fukuda N., Kidoya H., Huang X.Y., Naitoh H., Satoh N., Takakura N. A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue. Biochem. Biophys. Res. Commun. 2007;353:182–188. doi: 10.1016/j.bbrc.2006.12.017.
    1. Mullen L.M., Bryant S.V., Torok M.A., Blumberg B., Gardiner D.M. Nerve dependency of regeneration: The role of distal-less and fgf signaling in amphibian limb regeneration. Development. 1996;122:3487–3497.
    1. Poss K.D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat. Rev. Genet. 2010;11:710–722. doi: 10.1038/nrg2879.
    1. Vidal P., Dickson M.G. Regeneration of the distal phalanx. A case report. J. Hand Surg. 1993;18:230–233. doi: 10.1016/0266-7681(93)90116-W.
    1. Lee L.P., Lau P.Y., Chan C.W. A simple and efficient treatment for fingertip injuries. J. Hand Surg. 1995;20:63–71. doi: 10.1016/S0266-7681(05)80019-1.
    1. Shieh S.J., Cheng T.C. Regeneration and repair of human digits and limbs: Fact and fiction. Regeneration. 2015;2:149–168. doi: 10.1002/reg2.41.
    1. Muneoka K., Allan C.H., Yang X., Lee J., Han M. Mammalian regeneration and regenerative medicine. Birth Defects Res. C: Embryo Today. 2008;84:265–280. doi: 10.1002/bdrc.20137.
    1. Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003;83:835–870.
    1. Heldin C.H., Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 1999;79:1283–1316.
    1. Broadley K.N., Aquino A.M., Woodward S.C., Buckley-Sturrock A., Sato Y., Rifkin D.B., Davidson J.M. Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab. Investig. 1989;61:571–575.
    1. Xin X., Yang S., Ingle G., Zlot C., Rangell L., Kowalski J., Schwall R., Ferrara N., Gerritsen M.E. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am. J. Pathol. 2001;158:1111–1120. doi: 10.1016/S0002-9440(10)64058-8.
    1. Tsou R., Fathke C., Wilson L., Wallace K., Gibran N., Isik F. Retroviral delivery of dominant-negative vascular endothelial growth factor receptor type 2 to murine wounds inhibits wound angiogenesis. Wound Repair Regen. 2002;10:222–229. doi: 10.1046/j.1524-475X.2002.10405.x.
    1. Howdieshell T.R., Callaway D., Webb W.L., Gaines M.D., Procter C.D., Jr., Sathyanarayana, Pollock J.S., Brock T.L., McNeil P.L. Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation. J. Surg. Res. 2001;96:173–182. doi: 10.1006/jsre.2001.6089.
    1. Harsum S., Clarke J.D., Martin P. A reciprocal relationship between cutaneous nerves and repairing skin wounds in the developing chick embryo. Dev. Biol. 2001;238:27–39. doi: 10.1006/dbio.2001.0395.
    1. Apfel S.C., Arezzo J.C., Brownlee M., Federoff H., Kessler J.A. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 1994;634:7–12. doi: 10.1016/0006-8993(94)90252-6.
    1. DiPietro L.A., Burdick M., Low Q.E., Kunkel S.L., Strieter R.M. Mip-1alpha as a critical macrophage chemoattractant in murine wound repair. J. Clin. Investig. 1998;101:1693–1698. doi: 10.1172/JCI1020.
    1. Gillitzer R., Goebeler M. Chemokines in cutaneous wound healing. J. Leukoc. Biol. 2001;69:513–521.
    1. Hubner G., Brauchle M., Smola H., Madlener M., Fassler R., Werner S. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine. 1996;8:548–556. doi: 10.1006/cyto.1996.0074.
    1. Johnston A.P., Yuzwa S.A., Carr M.J., Mahmud N., Storer M.A., Krause M.P., Jones K., Paul S., Kaplan D.R., Miller F.D. Dedifferentiated schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell. 2016;19:433–448. doi: 10.1016/j.stem.2016.06.002.
    1. Yu L., Yan M., Simkin J., Ketcham P.D., Leininger E., Han M., Muneoka K. Angiogenesis is inhibitory for mammalian digit regeneration. Regeneration. 2014;1:33–46. doi: 10.1002/reg2.24.
    1. Godwin J.W., Pinto A.R., Rosenthal N.A. Macrophages are required for adult salamander limb regeneration. Proc. Natl. Acad. Sci. USA. 2013;110:9415–9420. doi: 10.1073/pnas.1300290110.
    1. Rowan M.P., Cancio L.C., Elster E.A., Burmeister D.M., Rose L.F., Natesan S., Chan R.K., Christy R.J., Chung K.K. Burn wound healing and treatment: Review and advancements. Crit. Care. 2015;19:243. doi: 10.1186/s13054-015-0961-2.
    1. Yu L., Han M., Yan M., Lee E.C., Lee J., Muneoka K. Bmp signaling induces digit regeneration in neonatal mice. Development. 2010;137:551–559. doi: 10.1242/dev.042424.
    1. Goss R.J. Regeneration versus repair. In: Cohen I.K., Diegelman R.F., Lindblad W.J., editors. Wound Healing: Biochemical and Clinical Aspects. W.B. Saunders Co.; Philadelphia, PA, USA: 1992. pp. 20–39.
    1. Simkin J., Sammarco M.C., Dawson L.A., Schanes P.P., Yu L., Muneoka K. The mammalian blastema: Regeneration at our fingertips. Regeneration. 2015;2:93–105. doi: 10.1002/reg2.36.
    1. Kwiatkowski A., Piatkowski M., Chen M., Kan L., Meng Q., Fan H., Osman A.H., Liu Z., Ledford B., He J.Q. Superior angiogenesis facilitates digit regrowth in mrl/mpj mice compared to c57bl/6 mice. Biochem. Biophys. Res. Commun. 2016;473:907–912. doi: 10.1016/j.bbrc.2016.03.149.
    1. Gohel M.S., Windhaber R.A., Tarlton J.F., Whyman M.R., Poskitt K.R. The relationship between cytokine concentrations and wound healing in chronic venous ulceration. J. Vasc. Surg. 2008;48:1272–1277. doi: 10.1016/j.jvs.2008.06.042.
    1. Nissen N.N., Polverini P.J., Koch A.E., Volin M.V., Gamelli R.L., DiPietro L.A. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am. J. Pathol. 1998;152:1445–1452.
    1. Lehoczky J.A. Are fingernails are a key to unlocking the puzzle of mammalian limb regeneration? Exp. Dermatol. 2016 doi: 10.1111/exd.13246.
    1. Mescher A.L., Neff A.W., King M.W. Inflammation and immunity in organ regeneration. Dev. Comp. Immunol. 2017;66:98–110. doi: 10.1016/j.dci.2016.02.015.
    1. Grow M., Neff A.W., Mescher A.L., King M.W. Global analysis of gene expression in xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev. Dyn. 2006;235:2667–2685. doi: 10.1002/dvdy.20897.
    1. King M.W., Neff A.W., Mescher A.L. The developing xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat. Rec. (Hoboken) 2012;295:1552–1561. doi: 10.1002/ar.22443.
    1. Fernando W.A., Leininger E., Simkin J., Li N., Malcom C.A., Sathyamoorthi S., Han M., Muneoka K. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev. Biol. 2011;350:301–310. doi: 10.1016/j.ydbio.2010.11.035.
    1. Kumar A., Brockes J.P. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 2012;35:691–699. doi: 10.1016/j.tins.2012.08.003.
    1. Rinkevich Y., Montoro D.T., Muhonen E., Walmsley G.G., Lo D., Hasegawa M., Januszyk M., Connolly A.J., Weissman I.L., Longaker M.T. Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proc. Natl. Acad. Sci. USA. 2014;111:9846–9851. doi: 10.1073/pnas.1410097111.
    1. Rinkevich Y., Lindau P., Ueno H., Longaker M.T., Weissman I.L. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature. 2011;476:409–413. doi: 10.1038/nature10346.
    1. Baudoin J., Jafari P., Meuli J., Applegate L.A., Raffoul W. Topical negative pressure on burns: An innovative method for wound exudate collection. Plast. Reconstr. Surg. Glob. Open. 2016;4:e1117. doi: 10.1097/GOX.0000000000001117.
    1. Bercoff J., Tanter M., Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004;51:396–409. doi: 10.1109/TUFFC.2004.1295425.

Source: PubMed

3
Abonneren