Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals

Jacob Tveiten Bjerrum, Yulan Wang, Fuhua Hao, Mehmet Coskun, Christian Ludwig, Ulrich Günther, Ole Haagen Nielsen, Jacob Tveiten Bjerrum, Yulan Wang, Fuhua Hao, Mehmet Coskun, Christian Ludwig, Ulrich Günther, Ole Haagen Nielsen

Abstract

This study employs spectroscopy-based metabolic profiling of fecal extracts from healthy subjects and patients with active or inactive ulcerative colitis (UC) and Crohn's disease (CD) to substantiate the potential use of spectroscopy as a non-invasive diagnostic tool and to characterize the fecal metabolome in inflammatory bowel disease (IBD). Stool samples from 113 individuals (UC 48, CD 44, controls 21) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with principal component analysis and orthogonal-projection to latent structure-discriminant analysis using SIMCA-P + 12 and MATLAB. Significant differences were found in the metabolic profiles making it possible to differentiate between active IBD and controls and between UC and CD. The metabolites holding differential power primarily belonged to a range of amino acids, microbiota-related short chain fatty acids, and lactate suggestive of an inflammation-driven malabsorption and dysbiosis of the normal bacterial ecology. However, removal of patients with intestinal surgery and anti-TNF-α antibody treatment eliminated the discriminative power regarding UC versus CD. This study consequently demonstrates that 1H NMR spectroscopy of fecal extracts is a potential non-invasive diagnostic tool and able to characterize the inflammation-driven changes in the metabolic profiles related to malabsorption and dysbiosis. Intestinal surgery and medication are to be accounted for in future studies, as it seems to be factors of importance in the discriminative process.

Keywords: Diagnostic tool; Dysbiosis; Inflammatory bowel disease; Metabolomics; NMR spectroscopy.

Figures

Fig. 1
Fig. 1
OPLS-DA score plots. The score plots (a, b, c, and d) are based on the four valid models containing all patients and display the 1st PLS component and one orthogonal component for each model. A two-way separation of the fecal samples is demonstrated in all 4 plots. Blue diamonds control; empty triangles active CD; red dots inactive CD; empty circles active UC; purple stars: inactive UC. The corresponding back-scaled loading plots reflect the class differences in the NMR spectra. Upright peaks indicate a relatively increased intensity of metabolites, and downright peaks a decreased intensity of metabolites. The colors shown on the plot are associated with the significance of metabolites in separating the samples as shown on the right hand side of the plot, where the color-scaling map is given together with the respective correlation coefficients. In accordance with the sample number in each group and a significance level of p < 0.05, the metabolites are significant at correlation coefficient values above a 0.55, b 0.43, c 0.44, and d 0.38, respectively. CD Crohn’s disease; UC ulcerative colitis; ala alanine; asp aspartate; buty butyrate; glu glutamate; gly glycine; ileu isoleucine; lac lactate; leu leucine; lys lysine; phe phenylalanine; prop proprionate; tyr tyrosine; val valine (Color figure online)
Fig. 2
Fig. 2
OPLS-DA score plots of patients without intestinal surgery. The score plots (a and b) are based on the two valid models containing only patients without intestinal surgery and display the 1st PLS component and one orthogonal component for each model. A two-way separation of the fecal samples is demonstrated in both plots. Blue squares inactive UC; purple stars active UC; green triangles controls. The corresponding back-scaled loading plots reflect the class differences in the NMR spectra. Upright peaks indicate a relatively increased intensity of metabolites, and downright peaks a decreased intensity of metabolites. The colors shown on the plot are associated with the significance of metabolites in separating the samples as shown on the right hand side of the plot, where the color-scaling map is given together with the respective correlation coefficients in accordance with the sample number in each group and a significance level of p < 0.05, the metabolites are significant at correlation coefficient values above a 0.44 and b 0.44, respectively. UC ulcerative colitis; ala alanine; buty butyrate; ileu isoleucine; lac lactate; leu leucine; lys lysine; prop proprionate; tau taurine; val valine (Color figure online)

References

    1. Ahmed I, Greenwood R, de Costello BL, Ratcliffe NM, Probert CS. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One. 2013;8(3):e58204. doi: 10.1371/journal.pone.0058204.
    1. Balasubramanian K, Kumar S, Singh RR, et al. Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magnetic Resonance Imaging. 2009;27(1):79–86. doi: 10.1016/j.mri.2008.05.014.
    1. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380(9853):1590–1605. doi: 10.1016/S0140-6736(12)60026-9.
    1. Bezabeh T, Somorjai RL, Smith ICP. MR metabolomics of fecal extracts: applications in the study of bowel diseases. Magnetic Resonance in Chemistry. 2009;47(Suppl 1):S54–S61. doi: 10.1002/mrc.2530.
    1. Bezabeh T, Somorjai RL, Smith IC, Nikulin AE, Dolenko B, Bernstein CN. The use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases: distinguishing ulcerative colitis from Crohn’s disease. American Journal of Gastroenterology. 2001;96(2):442–448. doi: 10.1111/j.1572-0241.2001.03523.x.
    1. Bjerrum JT, Hansen M, Olsen J, Nielsen OH. Genome-wide gene expression analysis of mucosal colonic biopsies and isolated colonocytes suggests a continuous inflammatory state in the lamina propria of patients with quiescent ulcerative colitis. Inflammatory Bowel Diseases. 2010;16(6):999–1007. doi: 10.1002/ibd.21142.
    1. Bjerrum JT, Nielsen OH, Hao F, et al. Metabonomics in ulcerative colitis: diagnostics, biomarker identification, and insight into the pathophysiology. Journal of Proteome Research. 2010;9(2):954–962. doi: 10.1021/pr9008223.
    1. Bjerrum JT, Nielsen OH, Wang YL, Olsen J. Technology insight: metabonomics in gastroenterology-basic principles and potential clinical applications. Nat Clin Pract Gastroenterol Hepatol. 2008;5(6):332–343. doi: 10.1038/ncpgasthep1125.
    1. Bjerrum, J. T., Nyberg, C., Olsen, J., & Nielsen, O. H. (2013). Assessment of the validity of a multi-gene analysis in the diagnostics of inflammatory bowel disease. Journal of Internal Medicine,275(5), 484–493.
    1. Bjerrum JT, Rantalainen M, Wang Y, Olsen J, Nielsen OH. Integration of transcriptomics and metabonomics: Improving diagnostics, biomarker identification and phenotyping in ulcerative colitis. Metabolomics. 2014;10:280–290. doi: 10.1007/s11306-013-0580-3.
    1. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics. 2006;20(8–10):341–351. doi: 10.1002/cem.1006.
    1. Chapman MA, Grahn MF, Boyle MA, Hutton M, Rogers J, Williams NS. Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut. 1994;35(1):73–76. doi: 10.1136/gut.35.1.73.
    1. Cloarec O, Dumas ME, Trygg J, et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry. 2005;77(2):517–526. doi: 10.1021/ac048803i.
    1. Dawiskiba T, Deja S, Mulak A, et al. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory bowel diseases. World Journal of Gastroenterology. 2014;20(1):163–174. doi: 10.3748/wjg.v20.i1.163.
    1. De Preter V, Bulteel V, Suenaert P, et al. Pouchitis, similar to active ulcerative colitis, is associated with impaired butyrate oxidation by intestinal mucosa. Inflammatory Bowel Diseases. 2009;15(3):335–340. doi: 10.1002/ibd.20768.
    1. De Preter V, Rutgeerts P, Schuit F, Verbeke K, Arijs I. Impaired expression of genes involved in the butyrate oxidation pathway in Crohn’s disease patients. Inflammatory Bowel Diseases. 2013;19(3):E43–E44. doi: 10.1002/ibd.22970.
    1. Dong F, Zhang L, Hao F, Tang H, Wang Y. Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. Journal of Proteome Research. 2013;12(6):2958–2966. doi: 10.1021/pr4002383.
    1. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62(4):531–539. doi: 10.1136/gutjnl-2012-302578.
    1. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environment Microbiology. 2004;70(10):5810–5817. doi: 10.1128/AEM.70.10.5810-5817.2004.
    1. Eriksson L, Trygg J, Wold S. CV-ANOVA for significance testing of PLS and OPLS® models. Journal of Chemometrics. 2008;22(11–12):594–600. doi: 10.1002/cem.1187.
    1. Etchevers MJ, Aceituno M, Sans M. Are we giving azathioprine too late? The case for early immunomodulation in inflammatory bowel disease. World Journal of Gastroenterology. 2008;14(36):5512–5518. doi: 10.3748/wjg.14.5512.
    1. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(34):13780–13785. doi: 10.1073/pnas.0706625104.
    1. Garner CE, Smith S, de Lacy Costello B, et al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB Journal. 2007;21(8):1675–1688. doi: 10.1096/fj.06-6927com.
    1. Geboes K, Colombel J-F, Greenstein A, et al. Indeterminate colitis: A review of the concept—What’s in a name? Inflammatory Bowel Diseases. 2008;14(6):850–857. doi: 10.1002/ibd.20361.
    1. Harvey RF, Bradshaw JM. A simple index of Crohn’s-disease activity. Lancet. 1980;1(8167):514. doi: 10.1016/S0140-6736(80)92767-1.
    1. Hove H, Nordgaard-Andersen I, Mortensen PB. Faecal DL-lactate concentration in 100 gastrointestinal patients. Scandinavian Journal of Gastroenterology. 1994;29(3):255–259. doi: 10.3109/00365529409090473.
    1. Jacobs DM, Deltimple N, van Velzen E, et al. (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR in Biomedicine. 2008;21(6):615–626. doi: 10.1002/nbm.1233.
    1. Jansson J, Willing B, Lucio M, et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One. 2009;4(7):e6386. doi: 10.1371/journal.pone.0006386.
    1. Le Gall G, Noor SO, Ridgway K, et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. Journal of Proteome Research. 2011;10(9):4208–4218. doi: 10.1021/pr2003598.
    1. Lin H-M, Edmunds SI, Helsby NA, Ferguson LR, Rowan DD. Nontargeted urinary metabolite profiling of a mouse model of Crohn’s disease. Journal of Proteome Research. 2009;8(4):2045–2057. doi: 10.1021/pr800999t.
    1. Marchesi JR, Holmes E, Khan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. Journal of Proteome Research. 2007;6(2):546–551. doi: 10.1021/pr060470d.
    1. Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ. Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflammatory Bowel Diseases. 2006;12(12):1136–1145. doi: 10.1097/01.mib.0000235828.09305.0c.
    1. Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Analytical Chemistry. 2008;80(14):5524–5531. doi: 10.1021/ac8005236.
    1. Nikolaus S, Schreiber S. Diagnostics of inflammatory bowel disease. Gastroenterology. 2007;133(5):1670–1689. doi: 10.1053/j.gastro.2007.09.001.
    1. Olsen J, Gerds TA, Seidelin JB, et al. Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflammatory Bowel Diseases. 2009;15(7):1032–1038. doi: 10.1002/ibd.20879.
    1. Ooi M, Nishiumi S, Yoshie T, et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflammation Research. 2011;60(9):831–840. doi: 10.1007/s00011-011-0340-7.
    1. Ordás I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380(9853):1606–1619. doi: 10.1016/S0140-6736(12)60150-0.
    1. Planell N, Lozano JJ, Mora-Buch R, et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut. 2013;62(7):967–976. doi: 10.1136/gutjnl-2012-303333.
    1. Ricart E, García-Bosch O, Ordás I, Panés J. Are we giving biologics too late? The case for early versus late use. World Journal of Gastroenterology. 2008;14(36):5523–5527. doi: 10.3748/wjg.14.5523.
    1. Saric J, Wang Y, Li J, et al. Species variation in the fecal metabolome gives insight into differential gastrointestinal function. Journal of Proteome Research. 2008;7(1):352–360. doi: 10.1021/pr070340k.
    1. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–594. doi: 10.1053/j.gastro.2007.11.059.
    1. Schicho R, Nazyrova A, Shaykhutdinov R, Duggan G, Vogel HJ, Storr M. Quantitative metabolomic profiling of serum and urine in DSS-induced ulcerative colitis of mice by 1H NMR spectroscopy. Journal of Proteome Research. 2010;9(12):6265–6273. doi: 10.1021/pr100547y.
    1. Schicho R, Shaykhutdinov R, Ngo J, et al. Quantitative metabolomic profiling of serum, plasma, and urine by (1)H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. Journal of Proteome Research. 2012;11(6):3344–3357. doi: 10.1021/pr300139q.
    1. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. New England Journal of Medicine. 1987;317(26):1625–1629. doi: 10.1056/NEJM198712243172603.
    1. Segain JP, Raingeard de Blétière la D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403. doi: 10.1136/gut.47.3.397.
    1. Sipos F, Galamb O, Wichmann B, et al. Peripheral blood based discrimination of ulcerative colitis and Crohn’s disease from non-IBD colitis by genome-wide gene expression profiling. Disease Markers. 2011;30(1):1–17. doi: 10.1155/2011/756290.
    1. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(43):16731–16736. doi: 10.1073/pnas.0804812105.
    1. Sokol H, Seksik P, Rigottier-Gois L, et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflammatory Bowel Diseases. 2006;12(2):106–111. doi: 10.1097/01.MIB.0000200323.38139.c6.
    1. Stephens NS, Siffledeen J, Su X, Murdoch TB, Fedorak RN, Slupsky CM. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. Journal of Crohn’s and Colitis. 2012;7(2):e42–e48. doi: 10.1016/j.crohns.2012.04.019.
    1. Swidsinski A, Loening-Baucke V, Herber A. Mucosal flora in Crohn’s disease and ulcerative colitis - an overview. Journal of Physiology and Pharmacology. 2009;60(Suppl 6):61–71.
    1. Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World Journal of Gastroenterology. 2007;13(20):2826–2832.
    1. Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain J-P. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflammatory Bowel Diseases. 2010;16(4):684–695. doi: 10.1002/ibd.21108.
    1. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews. 2001;81(3):1031–1064.
    1. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS) Journal of Chemometrics. 2002;16(3):119–128. doi: 10.1002/cem.695.
    1. Tso VK, Sydora BC, Foshaug RR, et al. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS One. 2013;8(7):e67654. doi: 10.1371/journal.pone.0067654.
    1. Vavricka SR, Spigaglia SM, Rogler G, et al. Systematic evaluation of risk factors for diagnostic delay in inflammatory bowel disease. Inflammatory Bowel Diseases. 2012;18(3):496–505. doi: 10.1002/ibd.21719.
    1. Vermeiren J, Van den Abbeele P, Laukens D, et al. Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiology Ecology. 2012;79(3):685–696. doi: 10.1111/j.1574-6941.2011.01252.x.
    1. Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M. Fecal lactate and ulcerative colitis. Gastroenterology. 1988;95(6):1564–1568.
    1. von Stein P, Lofberg R, Kuznetsov NV, et al. Multigene analysis can discriminate between ulcerative colitis, Crohn’s disease, and irritable bowel syndrome. Gastroenterology. 2008;134(7):1869–1881. doi: 10.1053/j.gastro.2008.02.083.
    1. Walton C, Fowler DP, Turner C, et al. Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflammatory Bowel Diseases. 2013;19(10):2069–2078. doi: 10.1097/MIB.0b013e31829a91f6.
    1. Williams HRT, Cox IJ, Walker DG, et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. American Journal of Gastroenterology. 2009;104(6):1435–1444. doi: 10.1038/ajg.2009.175.
    1. Williams HRT, Willsmore JD, Cox IJ, et al. Serum metabolic profiling in inflammatory bowel disease. Digestive Diseases and Sciences. 2012;57(8):2157–2165. doi: 10.1007/s10620-012-2127-2.
    1. Wu F, Dassopoulos T, Cope L, et al. Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflammatory Bowel Diseases. 2007;13(7):807–821. doi: 10.1002/ibd.20110.
    1. Zhang Y, Lin L, Xu Y, Lin Y, Jin Y, Zheng C. 1H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis. Biochemical and Biophysical Research Communications. 2013;433(4):547–551. doi: 10.1016/j.bbrc.2013.03.012.

Source: PubMed

3
Abonneren