Impact of COVID-19 on Mitochondrial-Based Immunity in Aging and Age-Related Diseases

Riya Ganji, P Hemachandra Reddy, Riya Ganji, P Hemachandra Reddy

Abstract

The coronavirus disease 2019 (COVID-19) has become a deadly pandemic with surging mortality rates and no cure. COVID-19 is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) with a range of clinical symptoms, including cough, fever, chills, headache, shortness of breath, difficulty breathing, muscle pain, and a loss of smell or taste. Aged individuals with compromised immunity are highly susceptible to COVID-19 and the likelihood of mortality increases with age and the presence of comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, or chronic obstructive pulmonary disease. Emerging evidence suggests that COVID-19 highjacks mitochondria of immune cells, replicates within mitochondrial structures, and impairs mitochondrial dynamics leading to cell death. Mitochondria are the powerhouses of the cell and are largely involved in maintaining cell immunity, homeostasis, and cell survival/death. Increasing evidence suggests that mitochondria from COVID-19 infected cells are highly vulnerable, and vulnerability increases with age. The purpose of our article is to summarize the role of various age-related comorbidities such as diabetes, obesity, and neurological diseases in increasing mortality rates amongst the elderly with COVID-19. Our article also highlights the interaction between coronavirus and mitochondrial dynamics in immune cells. We also highlight the current treatments, lifestyles, and safety measures that can help protect against COVID-19. Further research is urgently needed to understand the molecular mechanisms between the mitochondrial virus and disease progression in COVID-19 patients.

Keywords: Alzheimer’s disease; COVID-19; SARS-CoV-2; diabetes; immune response; lifestyle; mitochondrial dynamics; obesity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ganji and Reddy.

Figures

Figure 1
Figure 1
Structure of severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2; Vallamkondu et al., 2020).
Figure 2
Figure 2
SARS-CoV-2 entry into host cells in the lung. Spike glycoproteins on the SARS-CoV-2 particle attach to human angiotensin-converting enzyme-2 for entry (Hoffmann et al., 2020). Host transmembrane serine protease 2 primes the spike protein for attachment (Hoffmann et al., 2020). Virus particle enters through endocytosis and spike proteins are cleaved (Ou et al., 2020).
Figure 3
Figure 3
SARS-CoV-2 products localize to the mitochondria inside human host cells. SARS-CoV-2 RNA genome has been shown to localize in the mitochondrial matrix through an unknown mechanism. Viral protein ORF-9b interacts with translocase of outer mitochondrial membrane-70 (TOMM70), a host receptor that may affect activation of the interferon response (Gordon et al., 2020). Viral ORF-7a localizes to transmembrane protein Bcl-xL on the OMM, causing the promotion of apoptosis (Schaecher et al., 2007). Viral ORF-3a is theorized to localize to ubiquitin-specific protease-30 (USP30), which is typically involved in mitochondrial fission/fusion and mitophagy; and the sequence of ORF-3a that interacts with USP30 has been found in SARS-CoV-2 (Singh et al., 2020).
Figure 4
Figure 4
Functions of normal mitochondria vs. effects on mitochondria in the presence of SARS-CoV-2. Normal mitochondria have a balance on fission and fusion, produce ROS only in quantities necessary, have balanced iron storage, and use mitophagy to upkeep functional mitochondria and protect the cell against damage. In the presence of SARS-CoV-2, mitochondria may have increased fusion (Shi et al., ; Zhang et al., 2020), an excess of ROS production (Kuka et al., ; Kang et al., 2016), too much iron in storage (Saleh et al., 2020), and impaired mitophagy that leads to platelet apoptosis (Lee et al., ; Tang et al., 2020). SARS-CoV-2 affects mitochondria may also serve as a source of double-membraned vesicles for the virus to travel in (Singh et al., 2020).
Figure 5
Figure 5
Proposed treatments for targeting mitochondrial-centered dysfunction in COVID-19. Encouraging mitophagy with Urolithin A (found in pomegranate juice; Ryu et al., 2016), calorie restriction (Khraiwesh et al., 2014), and polyamine spermidine (Eisenberg et al., 2016) may reduce severe effects of COVID-19. Mitochondrial transfer (Islam et al., 2012) may protect against acute lung injury. Exercise, breathing exercises, and foods high in anti-oxidants and with anti-inflammatory properties are lifestyle changes that can contribute to better protection against the severe respiratory symptoms in COVID-19.

References

    1. Aguirre J. D., Culotta V. C. (2012). Battles with iron: manganese in oxidative stress protection. J. Biol. Chem. 287, 13541–13548. 10.1074/jbc.R111.312181
    1. AlGhatrif M., Cingolani O., Lakatta E. G. (2020). The dilemma of coronavirus disease 2019, aging and cardiovascular disease: insights from cardiovascular aging science. JAMA Cardiol. 5, 747–748. 10.1001/jamacardio.2020.1329
    1. American Lung Association (ALA) (2020). Breathing Exercises. Available online at: . Accessed September 20, 2020.
    1. Archer S. L. (2013). Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251. 10.1056/NEJMra1215233
    1. Barbier V., Lang D., Valois S., Rothman A. L., Medin C. L. (2017). Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 500, 149–160. 10.1016/j.virol.2016.10.022
    1. Beal M. F. (2005). Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58, 495–505. 10.1002/ana.20624
    1. Bhatti J. S., Bhatti G. K., Khullar N., Reddy A., Reddy P. H. (2020). Therapeutic strategies in the development of anti-viral drugs and vaccines against SARS-CoV-2 infection. Mol. Neurobiol. 57, 4856–4877. 10.1007/s12035-020-02074-2
    1. Brenner D., Mak T. W. (2009). Mitochondrial cell death effectors. Curr. Opin. Cell Biol. 21, 871–877. 10.1016/j.ceb.2009.09.004
    1. Brun A., Rivas C., Esteban M., Escribano J. M., Alonso C. (1996). African swine fever virus gene A179L, a viral homologue of bcl-2, protects cells from programmed cell death. Virology 225, 227–230. 10.1006/viro.1996.0592
    1. Cain K., Bratton S. B., Cohen G. M. (2002). The Apaf-1 apoptosome: a large caspase activating complex. Biochimie 84, 203–214. 10.1016/s0300-9084(02)01376-7
    1. Calkins M. J., Manczak M., Mao P., Shirendeb U., Reddy P. H. (2011). Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 20, 4515–4529. 10.1093/hmg/ddr381
    1. Cao Y., Li L., Feng Z., Wan S., Huang P., Sun X., et al. . (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 6:11. 10.1038/s41421-020-0147-1
    1. Chanturiya A. N., Basañez G., Schubert U., Henklein P., Yewdell J. W., Zimmerberg J. (2004). PB1–F2, an influenza a virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J. Virol. 78, 6304–6312. 10.1128/JVI.78.12.6304-6312.2004
    1. Chaudhari S. N., Kipreos E. T. (2017). Increased mitochondrial fusion allows the survival of older animals in diverse C. elegans longevity pathways. Nat. Commun. 8:182. 10.1038/s41467-017-00274-4
    1. Chawla-Sarkar M., Lindner D. J., Liu Y.-F., Williams B. R., Sen G. C., Silverman R. H., et al. . (2003). Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8, 237–249. 10.1023/a:1023668705040
    1. Chen C. Y., Ping Y. H., Lee H. C., Chen K. H., Lee Y. M., Chan Y. J., et al. . (2007). Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis. J. Infect. Dis. 196, 405–415. 10.1086/519166
    1. Chen L., Willis S. N., Wei A., Smith B. J., Fletcher J. I., Hinds M. G., et al. . (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403. 10.1016/j.molcel.2004.12.030
    1. Cheng E. H., Nicholas J., Bellows D. S., Hayward G. S., Guo H. G., Reitz M. S., et al. . (1997). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. U S A 94, 690–694. 10.1016/j.intimp.2020.107264
    1. Cheng G., Zhong J., Chung J., Chisari F. V. (2007). Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. U S A 104, 9035–9040. 10.1073/pnas.0703285104
    1. Chistiakov D. A., Sobenin I. A., Revin V. V., Orekhov A. N., Bobryshev Y. V. (2014). Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res. Int. 2014:238463. 10.1155/2014/238463
    1. Chiu Y. H., Macmillan J. B., Chen Z. J. (2009). RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591. 10.1016/j.cell.2009.06.015
    1. Clementz M. A., Kanjanahaluethai A., O’Brien T. E., Baker S. C. (2008). Mutation in murine coronavirus replication 451 protein nsp4 alters assembly of double membrane vesicles. Virology 375, 118–129. 10.1016/j.virol.2008.01.018
    1. Conley K. E., Jubrias S. A., Esselman P. C. (2000). Oxidative capacity and ageing in human muscle. J. Physiol. 526, 203–210. 10.1111/j.1469-7793.2000.t01-1-00203.x
    1. Coskun P. E., Beal M. F., Wallace D. C. (2004). Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. U S A 101, 10726–10731. 10.1073/pnas.0403649101
    1. Crane J. D., Devries M. C., Safdar A., Hamadeh M. J., Tarnopolsky M. A. (2010). The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. J. Gerontol. A Biol. Sci. Med. Sci. 65, 119–128. 10.1093/gerona/glp179
    1. Crouch P. J., Blake R., Duce J. A., Ciccotosto G. D., Li Q. X., Barnham K. J., et al. . (2005). Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42. J. Neurosci. 25, 672–679. 10.1523/JNEUROSCI.4276-04.2005
    1. Deniaud A., Sharaf el dein O., Maillier E., Poncet D., Kroemer G., Lemaire C., et al. . (2008). Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285–299. 10.1038/sj.onc.1210638
    1. Doorbar J., Ely S., Sterling J., McLean C., Crawford L. (1991). Specific interaction between HPV-16 E1–E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352, 824–827. 10.1038/352824a0
    1. Douglas A. E., Corbett K. D., Berger J. M., McFadden G., Handel T. M. (2007). Structure of M11L: a myxoma virus structural homolog of the apoptosis inhibitor, Bcl-2. Protein Sci. 16, 695–703. 10.1110/ps.062720107
    1. Du C., Fang M., Li Y., Li L., Wang X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42. 10.1016/s0092-8674(00)00008-8
    1. Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., et al. . (2016). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438. 10.1038/nm.4222
    1. Fernandez-Sanz C., Ruiz-Meana M., Castellano J., Miro-Casas E., Nuñez E., Inserte J., et al. . (2015). Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thromb. Haemost. 113, 441–451. 10.1160/TH14-10-0901
    1. Fernandez-Sanz C., Ruiz-Meana M., Miro-Casas E., Nuñez E., Castellano J., Loureiro M., et al. . (2014). Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis. 5:e1573. 10.1038/cddis.2014.526
    1. Ferrara N., Rinaldi B., Corbi G., Conti V., Stiuso P., Boccuti S., et al. . (2008). Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res. 11, 139–150. 10.1089/rej.2007.0576
    1. Fields J. A., Serger E., Campos S., Divakaruni A. S., Kim C., Smith K., et al. . (2016). HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol. Dis. 86, 154–169. 10.1016/j.nbd.2015.11.015
    1. Fiuza-Luces C., Garatachea N., Berger N. A., Lucia A. (2013). Exercise is the real polypill. Physiology 28, 330–358. 10.1152/physiol.00019.2013
    1. Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., et al. . (2007). Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105. 10.1016/j.mad.2006.11.016
    1. Frenzel M., Rommelspacher H., Sugawa M. D., Dencher N. A. (2010). Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp. Gerontol. 45, 563–572. 10.1016/j.exger.2010.02.003
    1. Furman D., Chang J., Lartigue L., Bolen C. R., Haddad F., Gaudilliere B., et al. . (2017). Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23, 174–184. 10.1038/nm.4267
    1. Gadaleta P., Perfetti X., Mersich S., Coulombié F. (2005). Early activation of the mitochondrial apoptotic pathway in vesicular stomatitis virus-infected cells. Virus Res. 109, 65–69. 10.1016/j.virusres.2004.10.007
    1. Garatachea N., Pareja-Galeano H., Sanchis-Gomar F., Santos-Lozano A., Fiuza-Luces C., Morán M., et al. . (2015). Exercise attenuates the major hallmarks of aging. Rejuvenation Res. 18, 57–89. 10.1089/rej.2014.1623
    1. García-Prat L., Martínez-Vicente M., Perdiguero E., Ortet L., Rodríguez-Ubreva J., Rebollo E., et al. . (2016). Autophagy maintains stemness by preventing senescence. Nature 529, 37–42. 10.1016/j.biologicals.2020.01.008
    1. Gibson G. E., Sheu K. F., Blass J. P. (1998). Abnormalities of mitochondrial enzymes in Alzheimer disease. J. Neural Transm. 105, 855–870. 10.1007/s007020050099
    1. Goldmacher V. S. (2002). vMIA, a viral inhibitor of apoptosis targeting mitochondria. Biochimie 84, 177–185. 10.1016/s0300-9084(02)01367-6
    1. Gong J., Dong H., Xia S. Q., Huang Y. Z., Wang D., Zhao Y., et al. (2020). Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. medRxiv [Preprint].10.1101/2020.02.25.20025643
    1. Gordon D. E., Jang G. M., Bouhaddou M., Xu J., Obernier K., White K. M., et al. . (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468. 10.1038/s41586-020-2286-9
    1. Hager K., Machein U., Krieger S., Platt D., Seefried G., Bauer J. (1994). Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiol. Aging 15, 771–772. 10.1016/0197-4580(94)90066-3
    1. Halestrap A. P., Richardson A. P. (2015). The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 78, 129–141. 10.1016/j.yjmcc.2014.08.018
    1. Han J., Sabbatini P., Perez D., Rao L., Modha D., White E. (1996). The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Dev. 10, 461–477. 10.1101/gad.10.4.461
    1. Hickish T., Robertson D., Clarke P., Hill M., di Stefano F., Clarke C., et al. . (1994). Ultrastructural localization of BHRF1: an Epstein-Barr virus gene product which has homology with bcl-2. Cancer Res. 54, 2808–2811.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. . (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271.e8–280.e8. 10.1016/j.cell.2020.02.052
    1. Holder K., Reddy P. H. (2020). The COVID-19 effect on the immune system and mitochondrial dynamics in diabetes, obesity and dementia. Neuroscientist [Epub ahead of print]. 10.1177/1073858420960443
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. . (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. 10.1016/S0140-6736(20)30183-5
    1. Ishikawa H., Barber G. N. (2008). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678. 10.1038/nature07317
    1. Islam M. N., Das S. R., Emin M. T., Wei M., Sun L., Rowlands D. J., et al. . (2012). Mitochondrial transfer from bone marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759–765. 10.1038/nm.2736
    1. Jacotot E., Ravagnan L., Loeffler M., Ferri K. F., Vieira H. L., Zamzami N., et al. . (2000). The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–46. 10.1084/jem.191.1.33
    1. Jang J. Y., Blum A., Liu J., Finkel T. (2018). The role of mitochondria in aging. J. Clin. Invest. 128, 3662–3670. 10.1172/JCI120842
    1. Jeyaraman M., John A., Koshy S., Ranjan R., Anudeep T. C., Jain R., et al. . (2020). Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochim. Biophys. Acta Mol. Basis Dis. 1867:166014. 10.1016/j.bbadis.2020.166014
    1. Kandimalla R., John A., Abburi C., Vallamkondu J., Reddy P. H. (2020). Current status of multiple drug molecules and vaccines: an update in SARS-CoV-2 therapeutics. Mol. Neurobiol. 57, 4106–4116. 10.1007/s12035-020-02022-0
    1. Kandimalla R., Reddy P. H. (2016). Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim. Biophys. Acta 1862, 814–828. 10.1016/j.bbadis.2015.12.018
    1. Kang E., Wang X., Tippner-Hedges R., Ma H., Folmes C. D., Gutierrez N. M., et al. . (2016). Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18, 625–636. 10.1016/j.stem.2016.02.005
    1. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., et al. . (2006). Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105. 10.1038/nature04734
    1. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., et al. . (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988. 10.1038/ni1243
    1. Khan M., Syed G. H., Kim S. J., Siddiqui A. (2015). Mitochondrial dynamics and viral infections: a close nexus. Biochim. Biophys. Acta Mol. Cell Res. 1853, 2822–2833. 10.1016/j.bbamcr.2014.12.040
    1. Khraiwesh H., López-Domínguez J. A., Fernández del Río L., Gutierrez-Casado E., López-Lluch G., Navas P., et al. . (2014). Mitochondrial ultrastructure and markers of dynamics in hepatocytes from aged, calorie restricted mice fed with different dietary fats. Exp. Gerontol. 56, 77–88. 10.1016/j.exger.2014.03.023
    1. Kim S. J., Khan M., Quan J., Till A., Subramani S., Siddiqui A. (2013). Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog. 9:e1003722. 10.1371/journal.ppat.1003722
    1. Kim S. J., Syed G. H., Khan M., Chiu W. W., Sohail M. A., Gish R. G., et al. . (2014). Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. U S A 111, 6413–6418. 10.1073/pnas.1321114111
    1. Kohlhaas M., Maack C. (2013). Calcium release microdomains and mitochondria. Cardiovasc. Res. 98, 259–268. 10.1093/cvr/cvt032
    1. Kuka S., Tatarkova Z., Racay P., Lehotsky J., Dobrota D., Kaplan P. (2013). Effect of aging on formation of reactive oxygen species by mitochondria of rat heart. Gen. Physiol. Biophys. 32, 415–420. 10.4149/gpb_2013049
    1. Kuwana T., Mackey M. R., Perkins G., Ellisman M. H., Latterich M., Schneiter R., et al. . (2002). Bid, Bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342. 10.1016/s0092-8674(02)01036-x
    1. Lee S. H., Du J., Stitham J., Atteya G., Lee S., Xiang Y., et al. . (2016). Inducing mitophagy in diabetic platelets protects against severe oxidative stress. EMBO Mol. Med. 8, 779–795. 10.15252/emmm.201506046
    1. Lei Y., Moore C. B., Liesman R. M., O’Connor B. P., Bergstralh D. T., Chen Z. J., et al. . (2009). MAVS-mediated apoptosis and its inhibition by viral proteins. PLoS One 4:e5466. 10.1371/journal.pone.0005466
    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. . (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207. 10.1056/NEJMoa2001316
    1. Li X., Fang P., Mai J., Choi E. T., Wang H., Yang X. F. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J. Hematol. Oncol. 6:19. 10.1186/1756-8722-6-19
    1. Lien P. (2020). Coronavirus Recovery: Breathing Exercises. Available online at: . Accessed September 20, 2020.
    1. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157. 10.1016/s0092-8674(00)80085-9
    1. Liu Y., Qu H., Tian L., Hakonarson H. (2020). Expression pattern of the SARS-CoV-2 receptor ACE2 and TMPRSS2 in the respiratory tract. Viruses 12:1174. 10.3390/v12101174
    1. Liu J., Wei T., Kwang J. (2004). Avian encephalomyelitis virus nonstructural protein 2C induces apoptosis by activating cytochrome c/caspase-9 pathway. Virology 318, 169–182. 10.1016/j.virol.2003.09.012
    1. Loson O. C., Song Z., Chen H., Chan D. C. (2013). Fis1, Mff, MiD49 and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659–667. 10.1091/mbc.E12-10-0721
    1. Manczak M., Park B. S., Jung Y., Reddy P. H. (2004). Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Med. 5, 147–162. 10.1385/NMM:5:2:147
    1. Mao K., Klionsky D. J. (2013). Participation of mitochondrial fission during mitophagy. Cell Cycle 12, 3131–3132. 10.4161/cc.26352
    1. Mauvais-Jarvis F. (2020). Aging, male sex, obesity and metabolic inflammation create the perfect storm for COVID-19. Diabetes 69, 1857–1863. 10.2337/dbi19-0023
    1. McCormick A. L., Smith V. L., Chow D., Mocarski E. S. (2003). Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J. Virol. 77, 631–641. 10.1128/jvi.77.1.631-641.2003
    1. Mears J. A., Lackner L. L., Fang S., Ingerman E., Nunnari J., Hinshaw J. E. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20–26. 10.1038/nsmb.1949
    1. Meng G., Xia M., Wang D., Chen A., Wang Y., Wang H., et al. . (2014). Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget 5, 6365–6374. 10.18632/oncotarget.2219
    1. Nilsson M. I., Bourgeois J. M., Nederveen J. P., Leite M. R., Hettinga B. P., Bujak A. L., et al. . (2019). Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One 14:e0210863. 10.1371/journal.pone.0210863
    1. Nomura-Takigawa Y., Nagano-Fujii M., Deng L., Kitazawa S., Ishido S., Sada K., et al. . (2006). Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J. Gen. Virol. 87, 1935–1945. 10.1099/vir.0.81701-0
    1. Nutt L. K., Pataer A., Pahler J., Fang B., Roth J., McConkey D. J., et al. . (2002). Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J. Biol. Chem. 277, 9219–9225. 10.1074/jbc.M106817200
    1. Obukhov A. G., Stevens B. R., Prasad R., Li Calzi S., Boulton M. E., Raizada M. K., et al. . (2020). SARS-CoV-2 infections and ACE2: clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes 69, 1875–1886. 10.2337/dbi20-0019
    1. Ohta A., Nishiyama Y. (2011). Mitochondria and viruses. Mitochondrion 11, 1–12. 10.1016/j.mito.2010.08.006
    1. Oliver D., Reddy P. H. (2019). Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8:961. 10.3390/cells8090961
    1. Oliver D. M. A., Reddy P. H. (2019). Molecular basis of Alzheimer’s disease: focus on mitochondria. J. Alzheimers Dis. 72, S95–S116. 10.3233/JAD-190048
    1. Onder G., Rezza G., Brusaferro S. (2020). Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323, 1775–1776. 10.1001/jama.2020.4683
    1. Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., et al. . (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11:1620. 10.1038/s41467-020-15562-9
    1. Panel M., Ghaleh B., Morin D. (2018). Mitochondria and aging: a role for the mitochondrial transition pore? Aging Cell 17:e12793. 10.1111/acel.12793
    1. Parker W. D., Jr., Filley C. M., Parks J. K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40, 1302–1303. 10.1212/wnl.40.8.1302
    1. Pinti M., Cevenini E., Nasi M., De Biasi S., Salvioli S., Monti D., et al. . (2014). Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur. J. Immunol. 44, 1552–1562. 10.1002/eji.201343921
    1. Pradeepkiran J. A., Reddy P. H. (2020). Defective mitophagy in Alzheimer’s disease. Ageing Res. Rev. 64:101191. 10.1016/j.arr.2020.101191
    1. Prikhod’ko E. A., Prikhod’ko G. G., Siegel R. M., Thompson P., Major M. E., Cohen J. I. (2004). The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology 329, 53–67. 10.1038/s42003-020-01505-z
    1. Reddy P. H. (2006). Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J. Neurochem. 96, 1–13. 10.1111/j.1471-4159.2005.03530.x
    1. Reddy P. H. (2009). Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr. 14, 8–13. 10.1017/s1092852900024901
    1. Reddy P. H., Beal M. F. (2005). Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res. Rev. 49, 618–632. 10.1016/j.brainresrev.2005.03.004
    1. Reddy P. H., Beal M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 14, 45–53. 10.1016/j.molmed.2007.12.002
    1. Reddy P. H., Mao P., Manczak M. (2009). Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res. Rev. 61, 33–48. 10.1016/j.brainresrev.2009.04.001
    1. Reddy P. H., Reddy T. P. (2011). Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr. Alzheimer Res. 8, 393–409. 10.2174/156720511795745401
    1. Reddy P. H., Reddy T. P., Manczak M., Calkins M. J., Shirendeb U., Mao P. (2011). Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Rev. 67, 103–118. 10.1016/j.brainresrev.2010.11.004
    1. Reddy P. H., Shirendeb U. P. (2012). Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria and selective synaptic degeneration in Huntington’s disease. Biochim. Biophys. Acta 1822, 101–110. 10.1016/j.bbadis.2011.10.016
    1. Ryu D., Mouchiroud L., Andreux P. A., Katsyuba E., Moullan N., Nicolet-Dit-Félix A. A., et al. . (2016). Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 22, 879–888. 10.1038/nm.4132
    1. Saleh J., Peyssonnaux C., Singh K. K., Edeas M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54, 1–7. 10.1016/j.mito.2020.06.008
    1. Samanta M., Iwakiri D., Kanda T., Imaizumi T., Takada K. (2006). EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 25, 4207–4214. 10.1038/sj.emboj.7601314
    1. Schaecher S. R., Touchette E., Schriewer J., Buller R. M., Pekosz A. (2007). Severe acute respiratory syndrome coronavirus gene 7 products contribute to virus-induced apoptosis. J. Virol. 81, 11054–11068. 10.1128/JVI.01266-07
    1. Scheen A. J. (2020). Metformin and COVID-19: from cellular mechanisms to reduced mortality. Diabetes Metab. 46, 423–426. 10.1016/j.diabet.2020.07.006
    1. Schulz T. J., Zarse K., Voigt A., Urban N., Birringer M., Ristow M. (2007). Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280–293. 10.1016/j.cmet.2007.08.011
    1. Seth R. B., Sun L., Ea C. K., Chen Z. J. (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682. 10.1016/j.cell.2005.08.012
    1. Shah A. (2020). Novel coronavirus-induced NLRP3 inflammasome activation: a potential drug target in the treatment of COVID-19. Front. Immunol. 11:1021. 10.3389/fimmu.2020.01021
    1. Shawgo M. E., Shelton S. N., Robertson J. D. (2008). Caspase-mediated Bak activation and cytochrome c release during intrinsic apoptotic cell death in Jurkat cells. J. Biol. Chem. 283, 35532–35538. 10.1074/jbc.M807656200
    1. Shi C. S., Qi H. Y., Boularan C., Huang N. N., Abu-Asab M., Shelhamer J. H., et al. . (2014). SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol. 193, 3080–3089. 10.4049/jimmunol.1303196
    1. Shimizu S., Narita M., Tsujimoto Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487. 10.1038/20959
    1. Singh K. K., Chaubey G., Chen J. Y., Suravajhala P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319, C258–C267. 10.1152/ajpcell.00224.2020
    1. Smith M. A., Perry G., Richey P. L., Sayre L. M., Anderson V. E., Beal M. F., et al. . (1996). Oxidative damage in Alzheimer’s. Nature 382, 120–121. 10.1038/382120b0
    1. Somasundaran M., Zapp M. L., Beattie L. K., Pang L., Byron K. S., Bassell G. J., et al. . (1994). Localization of HIV RNA in mitochondria of infected cells: potential role in cytopathogenicity. J. Cell Biol. 126, 1353–1360. 10.1083/jcb.126.6.1353
    1. Soysal P., Stubbs B., Lucato P., Luchini C., Solmi M., Peluso R., et al. . (2016). Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res. Rev. 31, 1–8. 10.1016/j.arr.2016.08.006
    1. Stokin G. B., Lillo C., Falzone T. L., Brusch R. G., Rockenstein E., Mount S. L., et al. . (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307, 1282–1288. 10.1126/science.1105681
    1. Szalai G., Csordás G., Hantash B. M., Thomas A. P., Hajnóczky G. (2000). Calcium signal transmission between ryanodine receptors and mitochondria. J. Biol. Chem. 275, 15305–15313. 10.1074/jbc.275.20.15305
    1. Takeuchi O., Akira S. (2009). Innate immunity to virus infection. Immunol. Rev. 227, 75–86. 10.1111/j.1600-065X.2008.00737.x
    1. Tal M. C., Iwasaki A. (2009). Autophagic control of RLR signaling. Autophagy 5, 749–750. 10.4161/auto.5.5.8789
    1. Tang N., Li D., Wang X., Sun Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18, 844–847. 10.1111/jth.14768
    1. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T. N., Politou M., et al. . (2020). Hematological findings and complications of COVID-19. Am. J. Hematol. 95, 834–847. 10.1002/ajh.25829
    1. Terrones O., Antonsson B., Yamaguchi H., Wang H.-G., Liu J., Lee R. M., et al. . (2004). Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J. Biol. Chem. 279, 30081–30091. 10.1074/jbc.M313420200
    1. Tiku V., Tan M., Dikic I. (2020). Mitochondrial functions in infection and immunity. Trends Cell Biol. 30, 263–275. 10.1016/j.tcb.2020.01.006
    1. Udagawa O., Ishihara T., Maeda M., Matsunaga Y., Tsukamoto S., Kawano N., et al. . (2014). Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles. Curr. Biol. 24, 2451–2458. 10.1016/j.cub.2014.08.060
    1. Vallamkondu J., John A., Yousuf W. W., Ramadevi S., Jella K. K., Reddy P. H., et al. . (2020). SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim. Biophys. Acta Mol. Basis Dis. 1866:165889. 10.1016/j.bbadis.2020.165889
    1. Varga Z. T., Grant A., Manicassamy B., Palese P. (2012). Influenza virus protein PB1–F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J. Virol. 86, 8359–8366. 10.1128/JVI.01122-12
    1. Wallace D. C. (2010). Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51, 440–450. 10.1002/em.20586
    1. Wiley C. D., Velarde M. C., Lecot P., Liu S., Sarnoski E. A., Freund A., et al. . (2016). Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314. 10.1016/j.cmet.2015.11.011
    1. World Health Organization (WHO) (2020). WHO Coronavirus Disease (COVID-19) Dashboard. Available online at: . Accessed December 10, 2020.
    1. Wu K., Zou J., Chang H. Y. (2020). RNA-GPS predicts SARS-CoV-2 RNA localization to host mitochondria and intracellular nucleolus. Cell Syst. 11, 102.e3–108.e3. 10.1016/j.cels.2020.06.008
    1. Xia M., Gonzalez P., Li C., Meng G., Jiang A., Wang H., et al. . (2014). Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J. Virol. 88, 5152–5164. 10.1128/JVI.03851-13
    1. Xie X., Chen J., Wang X., Zhang F., Liu Y. (2006). Age- and gender-related difference of ACE2 expression in rat lung. Life Sci. 78, 2166–2171. 10.1016/j.lfs.2005.09.038
    1. Xu Z., Wang Y., Xiao Z. G., Zou C., Zhang X., Wang Z., et al. . (2018). Nuclear receptor ERRα and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer. Oncogene 37, 6259–6274. 10.1038/s41388-018-0409-7
    1. Yan Y., Finkel T. (2017). Autophagy as a regulator of cardiovascular redox homeostasis. Free Radic. Biol. Med. 109, 108–113. 10.1016/j.freeradbiomed.2016.12.003
    1. Yang W., Hekimi S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8:e1000556. 10.1371/journal.pbio.1000556
    1. Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q., et al. . (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int. J. Infect. Dis. 94, 91–95. 10.1016/j.ijid.2020.03.017
    1. Yasukawa K., Oshiumi H., Takeda M., Ishihara N., Yanagi Y., Seya T., et al. . (2009). Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci. Signal. 2:ra47. 10.1126/scisignal.2000287
    1. Ye Z., Wong C. K., Li P., Xie Y. (2008). A SARS-CoV protein, ORF-6, induces caspase-3 mediated, ER stress and JNK-dependent apoptosis. Biochim. Biophys. Acta 1780, 1383–1387. 10.1016/j.bbagen.2008.07.009
    1. Zhang J. J., Dong X., Cao Y. Y., Yuan Y. D., Yang Y. B., Yan Y. Q., et al. . (2020). Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 75, 1730–1741. 10.1111/all.14238
    1. Zhang J., Zhang Y. B., Wu M., Wang B., Chen C., Gui J. F. (2014). Fish MAVS is involved in RLR pathway-mediated IFN response. Fish Shellfish Immunol. 41, 222–230. 10.1016/j.fsi.2014.09.002

Source: PubMed

3
Abonneren