Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria

Melanie Jünger, Wolfgang Vautz, Martin Kuhns, Lena Hofmann, Siobhán Ulbricht, Jörg Ingo Baumbach, Michael Quintel, Thorsten Perl, Melanie Jünger, Wolfgang Vautz, Martin Kuhns, Lena Hofmann, Siobhán Ulbricht, Jörg Ingo Baumbach, Michael Quintel, Thorsten Perl

Abstract

Presently, 2 to 4 days elapse between sampling at infection suspicion and result of microbial diagnostics. This delay for the identification of pathogens causes quite often a late and/or inappropriate initiation of therapy for patients suffering from infections. Bad outcome and high hospitalization costs are the consequences of these currently existing limited pathogen identification possibilities. For this reason, we aimed to apply the innovative method multi-capillary column-ion mobility spectrometry (MCC-IMS) for a fast identification of human pathogenic bacteria by determination of their characteristic volatile metabolomes. We determined volatile organic compound (VOC) patterns in headspace of 15 human pathogenic bacteria, which were grown for 24 h on Columbia blood agar plates. Besides MCC-IMS determination, we also used thermal desorption-gas chromatography-mass spectrometry measurements to confirm and evaluate obtained MCC-IMS data and if possible to assign volatile compounds to unknown MCC-IMS signals. Up to 21 specific signals have been determined by MCC-IMS for Proteus mirabilis possessing the most VOCs of all investigated strains. Of particular importance is the result that all investigated strains showed different VOC patterns by MCC-IMS using positive and negative ion mode for every single strain. Thus, the discrimination of investigated bacteria is possible by detection of their volatile organic compounds in the chosen experimental setup with the fast and cost-effective method MCC-IMS. In a hospital routine, this method could enable the identification of pathogens already after 24 h with the consequence that a specific therapy could be initiated significantly earlier.

Figures

Fig. 1
Fig. 1
Summarized MCC-IMS topographic plot of bacterial volatiles, which can be used for bacterial discrimination. Fifteen (1–15) compounds have been determined in positive (a) and 16 (17–32) compounds have been determined in negative ion detection mode (b). All depicted compounds are listed in Table 1
Fig. 2
Fig. 2
Region comparison image of MCC-IMS analyses of bacterial volatiles. Only monomeric MCC-IMS signals are shown. Red boxes indicate the presence of a VOC, which can be used for bacterial discrimination. Signals from 1 to 14 have been determined in positive ion mode, whereas signals from 17 to 29 have been determined in negative ion mode. An example of headspace VOCs of sheep blood agar and one example of headspace of every bacterial strain is displayed. All strains have been cultivated for 24 h. Signal intensities are illustrated by different colours (white = zero, blue = low, red = medium, yellow = high). The following signals have been used for further analyses: 1 ethanol, 2 indole, 3 phenethyl alcohol, 4 p_649_194, 5 p_675_194, 6 p_679_429, 7 p_700_423, 8 p_711_3, 9 p_749_26, 10 p_749_37, 11 p_771_54, 13 p_793_19, 14 p_794_12, 17 phenethyl alcohol, 18 p_493_17, 19 p_543_12, 20 p_563_24, 21 p_572_8, 22 2-(methylthio)-ethanol, 25 indole, 26 p_629_10, 27 p_654_20, 28 p_681_36 and 29 p_688_22
Fig. 3
Fig. 3
MCC-IMS topographic plot of volatiles which have been detected in bacterial headspace but have not been chosen for discrimination of bacteria. Because either concentration of VOCs was too low in 10 mL headspace samples or high density of background signals of Columbia sheep blood agar, headspace prevents an unambiguous differentiation. For compound name, see Table 2
Fig. 4
Fig. 4
Total ion chromatograms of bacterial headspace samples. For pre-concentration, VOCs of 2 L headspace volume have been adsorbed to Tenax GR. Total ion chromatograms are shown from 7 to 28 min. Identity of VOCs is summarized in Table 2. Cyclohexanol Rt = 12.17 min, styrene Rt = 12.35 min, cyclohexanone Rt = 12.45 min, benzaldehyde Rt = 14.14 min, 2-ethyl-1-hexanol Rt = 15.61 min and acetophenone Rt = 16.68 min have been detected as main volatile compounds over Columbia sheep blood agar. Benzothiazole—a contaminant of the operation gas—has been detected in every headspace sample at Rt = 20.37 min

References

    1. Alvarez-Lerma F. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group. Intensive Care Med. 1996;22:387–394. doi: 10.1007/BF01712153.
    1. Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med. 2009;360:439–443. doi: 10.1056/NEJMp0804651.
    1. Bahrani-Mougeot FK, Paster BJ, Coleman S, Barbuto S, Brennan MT, Noll J, Kennedy T, Fox PC, Lockhart PB. Molecular analysis of oral and respiratory bacterial species associated with ventilator-associated pneumonia. J Clin Microbiol. 2007;45:1588–1593. doi: 10.1128/JCM.01963-06.
    1. Barbuddhe SB, Maier T, Schwarz G, Kostrzewa M, Hof H, Domann E, Chakraborty T, Hain T. Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl Environ Microbiol. 2008;74:5402–5407. doi: 10.1128/AEM.02689-07.
    1. Baumbach JI, Eiceman GA. Ion mobility spectrometry: arriving on-site and moving beyond a low profile. Appl Spectrosc. 1999;53:338A–355A. doi: 10.1366/0003702991947847.
    1. Borsdorf H, Eiceman GA. Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev. 2006;41:323–375. doi: 10.1080/05704920600663469.
    1. Burgess DS. Curbing resistance development: maximizing the utility of available agents. J Manag Care Pharm. 2009;15(5 Suppl):S5–S9.
    1. Chaim W, Karpas Z, Lorber A. New technology for diagnosis of bacterial vaginosis. Eur J Obstet Gynecol Reprod Biol. 2003;111:83–87. doi: 10.1016/S0301-2115(03)00210-0.
    1. Chastre J. Evolving problems with resistant pathogens. Clin Microbiol Infect. 2008;14(Suppl 3):3–14. doi: 10.1111/j.1469-0691.2008.01958.x.
    1. Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S. Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodivers. 2005;2:837–865. doi: 10.1002/cbdv.200590062.
    1. Eiceman GA, Karpas Z. Ion mobility spectrometry. Boca Raton, Ann Arbor, London, Tokyo: CRC Press; 2005. pp. 1–228.
    1. Fenollar F, Raoult D. Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int J Antimicrob Agents. 2007;30:S7–S15. doi: 10.1016/j.ijantimicag.2007.06.024.
    1. Jünger M, Bödeker B, Baumbach JI. Peak assignment in multi-capillary column-ion mobility spectrometry using comparative studies with gas chromatography–mass spectrometry for VOC analysis. Anal Bioanal Chem. 2010;396:471–482. doi: 10.1007/s00216-009-3168-z.
    1. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B. Bacterial volatiles and their action potential. Appl Microbiol Biotechnol. 2009;81:1001–1012. doi: 10.1007/s00253-008-1760-3.
    1. Kollef MH. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin Infect Dis. 2000;31(Suppl 4):S131–S138. doi: 10.1086/314079.
    1. Korpi A, Järnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol. 2009;39:139–193. doi: 10.1080/10408440802291497.
    1. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D, Cooperative Antimicrobial Therapy of Septic Shock Database Research Group Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136:1237–1248. doi: 10.1378/chest.09-0087.
    1. Lehmann LE, Herpichboehm B, Kost GJ, Kollef MH, Stuber F (2010) Cost and mortality prediction using polymerase chain reaction pathogen detection in sepsis: evidence from three observational trials. Crit Care 14:R186
    1. O’Hara M, Mayhew CA. A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J Breath Res. 2009;3:8.
    1. Palka-Santini M, Cleven BE, Eichinger L, Krönke M, Krut O. Large scale multiplex PCR improves pathogen detection by DNA microarrays. BMC Microbiol. 2009;9:1. doi: 10.1186/1471-2180-9-1.
    1. Pavlou A, Turner AP, Magan N. Recognition of anaerobic bacterial isolates in vitro using electronic nose technology. Lett Appl Microbiol. 2002;35:366–369. doi: 10.1046/j.1472-765X.2002.01197.x.
    1. Perl T, Bödeker B, Jünger M, Nolte N, Vautz W. Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry. Anal Bioanal Chem. 2010;397:2385–2394. doi: 10.1007/s00216-010-3798-1.
    1. Perl T, Jünger M, Vautz W, Nolte J, Kuhns M, Borg-von Zepelin M, Quintel M. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry—metabolic profiling by volatile organic compounds. Mycoses. 2011;54:e828–e837. doi: 10.1111/j.1439-0507.2011.02037.x.
    1. Phillips M, Altorki N, Austin JH, Cameron RB, Cataneo RN, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid A, Rom WN, Schmitt P, Wai J. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin Chim Acta. 2008;393:76–84. doi: 10.1016/j.cca.2008.02.021.
    1. Rello J, Gallego M, Mariscal D, Sonora R, Valles J. The value of routine microbial investigation in ventilator-associated pneumonia. Am J Respir Crit Care Med. 1997;156:196–200.
    1. Roehl RE. Environmental and process applications for ion mobility spectrometry. Appl Spectrosc Rev. 1991;26:1–57. doi: 10.1080/05704929108053459.
    1. Ruzsanyi V, Sielemann S, Baumbach JI. Determination of microbial volatile organic compounds (MVOC) using IMS with different ionization sources. Int J Ion Mobil Spectrom. 2002;5:138–142.
    1. Schöller CE, Gürtler H, Pedersen R, Molin S, Wilkins K. Volatile metabolites from Actinomycetes. J Agric Food Chem. 2002;50:2615–2621. doi: 10.1021/jf0116754.
    1. Schulz S, Dickschat JS. Bacterial volatiles: the smell of small organisms. Nat Prod Rep. 2007;24:814–842. doi: 10.1039/b507392h.
    1. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543–551. doi: 10.1086/600885.
    1. Shnayderman M, Mansfield B, Yip P, Clark HA, Krebs MD, Cohen SJ, Zeskind JE, Ryan ET, Dorkin HL, Callahan MV, Stair TO, Gelfand JA, Gill CJ, Hitt B, Davis CE. Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Anal Chem. 2005;77:5930–5937. doi: 10.1021/ac050348i.
    1. Smith GB, Eiceman GA, Walsh MK, Critz SA, Andazola E, Ortega E, Cadena F. Detection of Salmonella typhimurium by hand-held ion mobility spectrometer: a quantitative assessment of response characteristics. Field Anal Chem Technol. 1997;1:213–226. doi: 10.1002/(SICI)1520-6521(1997)1:4<213::AID-FACT4>;2-W.
    1. Snyder AP, Shoff DB, Eiceman GA, Blyth DA, Parsons JA. Detection of bacteria by ion mobility spectrometry. Anal Chem. 1991;63:526–529. doi: 10.1021/ac00005a028.
    1. Stotzky G, Schenck S. Volatile organic compounds and microorganisms. CRC Crit Rev Microbiol. 1976;4:333–382. doi: 10.3109/10408417609102303.
    1. Vautz W, Baumbach JI. Exemplar application of multi-capillary column ion mobility spectrometry for biological and medical purpose. Int J Ion Mobil Spectrom. 2008;11:35–41. doi: 10.1007/s12127-008-0007-4.
    1. Vautz W, Bödeker B, Baumbach JI, Bader S, Westhoff M, Perl T. An implementable approach to obtain reproducible reduced ion mobility. Int J Ion Mobil Spectrom. 2009;12:47–57. doi: 10.1007/s12127-009-0018-9.
    1. Vautz W, Nolte J, Bufe A, Baumbach JI, Peters M. Analyses of mouse breath with ion mobility spectrometry: a feasibility study. J Appl Physiol. 2010;108:697–704. doi: 10.1152/japplphysiol.00658.2009.
    1. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol. 2003;185:2061–2065. doi: 10.1128/JB.185.7.2080-2095.2003.
    1. Westhoff M, Litterst P, Freitag L, Baumbach JI. Ion mobility spectrometry in the diagnosis of sarcoidosis: results of a feasibility study. J Physiol Pharmacol. 2007;58(Suppl 5):739–751.
    1. Yoo SM, Choi JH, Lee SY, Yoo NC. Applications of DNA microarray in disease diagnostics. J Microbiol Biotechnol. 2009;19:635–646.
    1. Zoller HF, Clark WM. The production of volatile fatty acids by bacteria of the dysentery group. J Gen Physiol. 1921;3:325–330. doi: 10.1085/jgp.3.3.325.

Source: PubMed

3
Abonneren