Virtual bronchoscopic navigation without X-ray fluoroscopy to diagnose peripheral pulmonary lesions: a randomized trial

Fumihiro Asano, Takashi Ishida, Naofumi Shinagawa, Noriaki Sukoh, Masaki Anzai, Kenya Kanazawa, Akifumi Tsuzuku, Satoshi Morita, Fumihiro Asano, Takashi Ishida, Naofumi Shinagawa, Noriaki Sukoh, Masaki Anzai, Kenya Kanazawa, Akifumi Tsuzuku, Satoshi Morita

Abstract

Background: Transbronchial biopsy for peripheral pulmonary lesions is generally performed under X-ray fluoroscopy. Virtual bronchoscopic navigation (VBN) is a method in which virtual images of the bronchial route to the lesion are produced based on CT images obtained before VBN, and the bronchoscope is guided using these virtual images, improving the diagnostic yield of peripheral pulmonary lesions. VBN has the possibility of eliminating the need for X-ray fluoroscopy in the bronchoscopic diagnosis of peripheral lesions. To determine whether VBN can be a substitute for X-ray fluoroscopy, a randomized multicenter trial (non-inferiority trial) was performed in VBN and X-ray fluoroscopy (XRF) -assisted groups.

Methods: The non-inferiority margin in the VBN-assisted group compared with the XRF-assisted group was set at 15%. The subjects consisted of 140 patients with peripheral pulmonary lesions with a mean diameter > 3 cm. In the VBN-assisted group, the bronchoscope was guided to the lesion using a VBN system without X-ray fluoroscopy. In the XRF-assisted group, the same bronchoscope was guided to the lesion under X-ray fluoroscopy. Subsequently, in both groups, the lesion was visualized using endobronchial ultrasonography with a guide sheath (EBUS/GS), and biopsy was performed. In this serial procedure, X-ray fluoroscopy was not used in the VBNA group.

Results: The subjects of analysis consisted of 129 patients. The diagnostic yield was 76.9% (50/65) in the VBN-assisted group and 85.9% (55/64) in the XRF-assisted group. The difference in the diagnostic yield between the two groups was -9.0% (95% confidence interval: -22.3% ~ 4.3%). The non-inferiority of the VBN-assisted group could not be confirmed. The rate of visualizing lesions by EBUS was 95.4% (62/65) in the VBN-assisted group and 96.9% (62/64) in the XRF-assisted group, being high in both groups.

Conclusions: On EBUS/GS, a bronchoscope and biopsy instruments may be guided to the lesions using VBN without X-ray fluoroscopy, but X-ray fluoroscopy is necessary to improve the accuracy of sample collection from lesions. During transbronchial biopsy for peripheral pulmonary lesions, VBN cannot be a substitute for X-ray fluoroscopy.

Trial registration: UMIN-CTR (UMIN000001710); registered 16 February 2009.

Keywords: Bronchoscopy; Endobronchial ultrasonography; Guide sheath; Lung cancer; Peripheral pulmonary lesion; Transbronchial biopsy; Virtual bronchoscopic navigation; X-ray fluoroscopy.

Conflict of interest statement

Ethics approval and consent to participate

The review boards of each participating institution approved all study protocols (Ethics Review Committee of Gifu Prefectural General Medical Center, 2008-14; Research ethics committee of Fukushima medical university, 837; Research ethics committee of Hokkaido University School of Medicine, 008-0115; Ethics Review Committee of National Hospital Organization Hokkaido Cancer Center, 20-7; Institutional Review Board of University of Fukui Hospital, 2009-819) and all patients provided written informed consent to participate according to the Declaration of Helsinki.

Consent for publication

Not Applicable.

Competing interests

Dr. Fumihiro Asano has received speaker fees from Olympus Medical Systems as invited guests to academic medical meetings. All other authors declare that they have no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram. VBN, virtual bronchoscopic navigation

References

    1. Jacobs PC, Mali WP, Grobbee DE, van der Graaf Y. Prevalence of incidental findings in computed tomographic screening of the chest: a systematic review. J Comput Assist Tomogr. 2008;32(2):214–221. doi: 10.1097/RCT.0b013e3181585ff2.
    1. Baaklini WA, Reinoso MA, Gorin AB, Sharafkaneh A, Manian P. Diagnostic yield of fiberoptic bronchoscopy in evaluating solitary pulmonary nodules. Chest. 2000;117(4):1049–1054. doi: 10.1378/chest.117.4.1049.
    1. Schreiber G, McCrory DC. Performance characteristics of different modalities for diagnosis of suspected lung cancer: summary of published evidence. Chest. 2003;123(Suppl 1):115S–128S. doi: 10.1378/chest.123.1_suppl.115S.
    1. Yung RC. Tissue diagnosis of suspected lung cancer: selecting between bronchoscopy, transthoracic needle aspiration, and resectional biopsy. Respir Care Clin N Am. 2003;9(1):51–76. doi: 10.1016/S1078-5337(02)00083-7.
    1. Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(Suppl 5):e142S–e165S. doi: 10.1378/chest.12-2353.
    1. Wagner U, Walthers EM, Gelmetti W, Klose KJ, von Wichert P. Computer-tomographically guided fiberbronchoscopic transbronchial biopsy of small pulmonary lesions: a feasibility study. Respiration. 1996;63(3):181–186. doi: 10.1159/000196541.
    1. Herth FJ, Ernst A, Becker HD. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur Respir J. 2002;20(4):972–974. doi: 10.1183/09031936.02.00032001.
    1. Kurimoto N, Miyazawa T, Okimasa S, Maeda A, Oiwa H, Miyazu Y, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004;126(3):959–965. doi: 10.1378/chest.126.3.959.
    1. Kikuchi E, Yamazaki K, Sukoh N, Kikuchi J, Asahina H, Imura M, et al. Endobronchial ultrasonography with guide-sheath for peripheral pulmonary lesions. Eur Respir J. 2004;24(4):533–537. doi: 10.1183/09031936.04.00138603.
    1. Eberhardt R, Ernst A, Herth FJ. Ultrasound-guided transbronchial biopsy of solitary pulmonary nodules less than 20 mm. Eur Respir J. 2009;34(6):1284–1287. doi: 10.1183/09031936.00166708.
    1. Berrington de Gonzalez A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–351. doi: 10.1016/S0140-6736(04)15433-0.
    1. Yoshikawa M, Sukoh N, Yamazaki K, Kanazawa K, Fukumoto S, Harada M, et al. Diagnostic value of endobronchial ultrasonography with a guide sheath for peripheral pulmonary lesions without X-ray fluoroscopy. Chest. 2007;131(6):1788–1793. doi: 10.1378/chest.06-2506.
    1. Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142(2):385–393. doi: 10.1378/chest.11-1764.
    1. Asano F, Matsuno Y, Matsushita T, Seko A. Transbronchial diagnosis of a pulmonary peripheral small lesion using an ultrathin bronchoscope with virtual bronchoscopic navigation. J Bronchol. 2002;9:108–111. doi: 10.1097/00128594-200204000-00007.
    1. Asano F, Eberhardt R, Herth FJ. Virtual bronchoscopic navigation for peripheral pulmonary lesions. Respiration. 2014;88(5):430–440. doi: 10.1159/000367900.
    1. Eberhardt R, Anantham D, Ernst A, Feller-Kopman D, Herth F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial. Am J Respir Crit Care Med. 2007;176(1):36–41. doi: 10.1164/rccm.200612-1866OC.
    1. Shinagawa N, Yamazaki K, Onodera Y, Miyasaka K, Kikuchi E, Dosaka-Akita H, et al. CT-guided transbronchial biopsy using an ultrathin bronchoscope with virtual bronchoscopic navigation. Chest. 2004;125(3):1138–1143. doi: 10.1378/chest.125.3.1138.
    1. Asano F, Shindoh J, Shigemitsu K, Miya K, Abe T, Horiba M, et al. Ultrathin bronchoscopic barium marking with virtual bronchoscopic navigation for fluoroscopy-assisted thoracoscopic surgery. Chest. 2004;126(5):1687–1693. doi: 10.1378/chest.126.5.1687.
    1. Asahina H, Yamazaki K, Onodera Y, Kikuchi E, Shinagawa N, Asano F, et al. Transbronchial biopsy using endobronchial ultrasonography with a guide sheath and virtual bronchoscopic navigation. Chest. 2005;128(3):1761–1765. doi: 10.1378/chest.128.3.1761.
    1. Yamada N, Yamazaki K, Kurimoto N, Asahina H, Kikuchi E, Shinagawa N, et al. Factors related to diagnostic yield of transbronchial biopsy using endobronchial ultrasonography with a guide sheath in small peripheral pulmonary lesions. Chest. 2007;132(2):603–608. doi: 10.1378/chest.07-0637.
    1. Asano F, Matsuno Y, Shinagawa N, Yamazaki K, Suzuki T, Ishida T, et al. A virtual bronchoscopic navigation system for pulmonary peripheral lesions. Chest. 2006;130(2):559–566. doi: 10.1378/chest.130.2.559.
    1. Shinagawa N, Yamazaki K, Onodera Y, Asano F, Ishida T, Moriya H, et al. Virtual bronchoscopic navigation system shortens the examination time--feasibility study of virtual bronchoscopic navigation system. Lung Cancer. 2007;56(2):201–206. doi: 10.1016/j.lungcan.2006.12.005.
    1. Tachihara M, Ishida T, Kanazawa K, Sugawara A, Watanabe K, Uekita K, et al. A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions. Lung Cancer. 2007;57(3):322–327. doi: 10.1016/j.lungcan.2007.04.006.
    1. Asano F, Matsuno Y, Tsuzuku A, Anzai M, Shinagawa N, Yamazaki K, et al. Diagnosis of peripheral pulmonary lesions using a bronchoscope insertion guidance system combined with endobronchial ultrasonography with a guide sheath. Lung Cancer. 2008;60(3):366–373. doi: 10.1016/j.lungcan.2007.10.022.
    1. Ishida T, Asano F, Yamazaki K, Shinagawa N, Oizumi S, Moriya H, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011;66(12):1072–1077. doi: 10.1136/thx.2010.145490.
    1. Asano F, Shinagawa N, Ishida T, Shindoh J, Anzai M, Tsuzuku A, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial. Am J Respir Crit Care Med. 2013;188(3):327–333. doi: 10.1164/rccm.201211-2104OC.
    1. Oki M, Saka H, Ando M, Asano F, Kurimoto N, Morita K, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am J Respir Crit Care Med. 2015;192(4):468–476. doi: 10.1164/rccm.201502-0205OC.
    1. Gex G, Pralong JA, Combescure C, Seijo L, Rochat T, Soccal PM. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration. 2014;87:165–176. doi: 10.1159/000355710.
    1. Minami H, Ando Y, Nomura F, Sakai S, Shimokata K. Interbronchoscopist variability in the diagnosis of lung cancer by flexible bronchoscopy. Chest. 1994;105(6):1658–1662. doi: 10.1378/chest.105.6.1658.
    1. Shinagawa N, Nakano K, Asahina H, Kikuchi E, Ito T, Matsuno Y, et al. Endobronchial ultrasonography with a guide sheath in the diagnosis of benign peripheral diseases. Ann Thorac Surg. 2012;93(3):951–957. doi: 10.1016/j.athoracsur.2011.11.073.
    1. Gaeta M, Pandolfo I, Volta S, Russi EG, Bartiromo G, Girone G, et al. Bronchus sign on CT in peripheral carcinoma of the lung: value in predicting results of transbronchial biopsy. AJR Am J Roentgenol. 1991;157(6):1181–1185. doi: 10.2214/ajr.157.6.1950861.

Source: PubMed

3
Abonneren