Pupil size differences between female and male patients after cataract surgery

Enrique Ordiñaga-Monreal, Diego Castanera-Gratacós, Fernando Castanera, Isabel Fambuena-Muedra, Fidel Vega, María S Millán, Enrique Ordiñaga-Monreal, Diego Castanera-Gratacós, Fernando Castanera, Isabel Fambuena-Muedra, Fidel Vega, María S Millán

Abstract

Purpose: To evaluate the changes in pupil diameter in women and men after cataract surgery. The correlation of pupillary changes with the variables age and anterior chamber depth will be analyzed.

Methods: The values of 109 randomized eyes who underwent cataract surgery were obtained and divided into two groups, 71 women and 38 men. Pupil diameter was measured preoperatively and 3-months postoperatively using the pupillometer software of the Topolyzer Vario (Wavelight Laser Technologie AG). Anterior chamber depth was obtained with Pentacam® (Oculus). Differences in pupillary diameters were investigated and correlations with age and anterior chamber depth were analyzed.

Results: For mesopic pupils, the male group had greater reduction in their postoperative pupillary diameter, -0.56 mm (-12.4%), than the female group, -0.38 mm (-8.2%), P = 0.025. Photopic postoperative pupils reduced to a lesser extent, yet more in men than in women (-0.11mm [-4.5%] vs. -0.04 [-1.6%], P = 0.048). Weak significant negative correlation was found between photopic pupillary changes in women with age (r = -0.24, P = 0.041), and positive correlation for mesopic pupillary changes in men with age (r = +0.34, P = 0.039).

Conclusions: Patients experience pupil reduction after cataract surgery in general, but more in men than in women and for both photopic and mesopic lighting conditions. The differences are statistically significant and have moderate clinical relevance. Concerning pupillary changes, weak but opposite sign correlations were found between male/female gender and age. Trial registration number at ClinicalTrials.gov Identifier: NCT04286646.

Keywords: Pupil disorders; age factors; anterior chamber; cataract; gender-related effect.

Copyright © 2021 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

Figures

Figure 1
Figure 1
Box-plot pupillary differences segmented by sex, between pre and postoperative pupils (A) photopic. (B) mesopic.
Figure 2
Figure 2
Correlations segmented by sex, between changes in photopic pupillary diameter and (A) age, (B) anterior chamber depth (corneal endothelium to anterior lens capsule surface).
Figure 3
Figure 3
Correlations segmented by sex, between changes in mesopic pupil diameter and (A) age, (B) anterior chamber depth (corneal endothelium to anterior lens capsule surface).

References

    1. Doden W. Pseudophakos and the pupil. Klin Monbl Augenheilkd. 1984;185:155–157. doi: 10.1055/s-2008-1054590.
    1. Gibbens MV, Goel R., Smith S.E. Effect of cataract-extraction on the pupil response to mydriatics. Br J Ophthalmol. 1989;73:563–565. doi: 10.1136/bjo.73.7.563.
    1. Kanellopoulos AJAJ, Asimellis G. Clear-cornea cataract surgery: pupil size and shape changes, along with anterior chamber volume and depth changes. A Scheimpflug imaging study. Clin Ophthalmol. 2014;8:2141–2150. doi: 10.2147/opth.s68370.
    1. Wang M., Corpuz C.C.C., Huseynova T., Tomita M. Pupil influence on the visual outcomes of a new-generation multifocal toric intraocular lens with a surface-embedded near segment. J Refract Surg. 2016;32:90–95. doi: 10.3928/1081597X-20160105-01.
    1. Kasper T., Buhren J., Kohnen T. Intraindividual comparison of higher-order aberrations after implantation of aspherical and spherical intraocular lenses as a function of pupil diameter. J Cataract Refract Surg. 2006;32:78–84. doi: 10.1016/j.jcrs.2005.11.018.
    1. Yamaguchi T., Negishi K., Ono T., et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter. J Cataract Refract Surg. 2009;35:1725–1733. doi: 10.1016/j.jcrs.2009.05.031.
    1. Woodward M.A., Randleman J.B., Stulting R.D. Dissatisfaction after multifocal intraocular lens implantation. J Cataract Refract Surg. 2009;35:992–997. doi: 10.1016/j.jcrs.2009.01.031.
    1. De Vries N.E., Webers C.A.B., Touwslager W.R.H., et al. Dissatisfaction after implantation of multifocal intraocular lenses. J Cataract Refract Surg. 2011;37:859–865. doi: 10.1016/j.jcrs.2010.11.032.
    1. Alfonso J.F., Fernández-Vega L., Amhaz H., Montés-Micó R., Valcárcel B., Ferrer-Blasco T. Visual function after implantation of an aspheric bifocal intraocular lens. J Cataract Refract Surg. 2009;35:885–892. doi: 10.1016/j.jcrs.2009.01.014.
    1. Kanellopoulos A.J., Asimellis G., Georgiadou S. Digital pupillometry and centroid shift cross mark changes after cataract surgery. J Cataract Refract Surg. 2015;41:408–414. doi: 10.1016/j.jcrs.2014.05.049.
    1. Fernández J., Rodríguez-Vallejo M., Martínez J., et al. Biometric factors associated with the visual performance of a high addition multifocal intraocular lens. Curr Eye Res. 2018;43:998–1005. doi: 10.1080/02713683.2018.1478981.
    1. Koch DDDD, Samuelson SWWSW, Villarreal RVV., Haft EAEAA, Kohnen T. Changes in pupil size induced by phacoemulsification and posterior chamber lens implantation: consequences for multifocal lenses. J Cataract Refract Surg. 1996;22:579–584. doi: 10.1016/S0886-3350(96)80013-7.
    1. Komatsu M., Oono S., Shimizu K. The effects of phaco-emulsification-aspiration and intra-ocular lens implantation on the pupil: pupillographic and pharmacologic study. Ophthalmologica. 1997;211:332–337. doi: 10.1159/000310823.
    1. Rishardson Z., Kanellopoulos A.J., Asimellis G. The change of scotopic and photopic pupil shape and size, and its reference to the cornea apex in cataract surgery. Invest Ophthalmol Vis Sci. 2014;55
    1. Simsek A., Bilgin B., Capkin M., Bilak S., Guler M., Reyhan A.H. Evaluation of anterior segment parameter changes using the sirius after uneventful phacoemulsification. Korean J Ophthalmol. 2016;30:251–257. doi: 10.3341/kjo.2016.30.4.251.
    1. Sahbaz I. Assessment of differences in pupil size following phacoemulsification surgery. Int J Appl basic Med Res. 2018;8:155–157. doi: 10.4103/ijabmr.IJABMR_211_17.
    1. Goulet-Pelletier J.-C., Cousineau D. A review of effect sizes and their confidence intervals, part I: the Cohen’s d family. Quant Methods Psychol. 2018;14:242–265. doi: 10.20982/tqmp.14.4.p242.
    1. Sullivan G.M., Feinn R. Using effect size-or why the P value is not enough. J Grad Med Educ. 2012;4:279–282. doi: 10.4300/JGME-D-12-00156.1.
    1. Holladay JT, Prager TC. Accurate ultrasonic biometry in pseudophakia. Am J Ophthalmol. 1993;115:536–537. doi: 10.1016/S0002-9394(14)74459-9.
    1. Esquiva G., Lax P., Pérez-Santonja J.J., García-Fernández J.M., Cuenca N. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front Aging Neurosci. 2017;9 doi: 10.3389/fnagi.2017.00079.
    1. Berson DM. Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26:314–320. doi: 10.1016/S0166-2236(03)00130-9.
    1. Schmidt T.M., Chen S.K., Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011;34:572–580. doi: 10.1016/j.tins.2011.07.001.
    1. Salah-Mabed I., Saad A., Gatinel D. Assessing repeatability of pupillometric measurements in the eyes of refractive surgery candidates using infrared pupillometer. J Refract Surg. 2017;33:552–557. doi: 10.3928/01913913-20170619-03.
    1. Kazis L.E., Anderson J.J., Meenan R.F. Effect sizes for interpreting changes in health status. Med Care. 1989;27:S178–S189. doi: 10.1097/00005650-198903001-00015.

Source: PubMed

3
Abonneren