Safety and Reproducibility of a Clinical Trial System Using Induced Blood Stage Plasmodium vivax Infection and Its Potential as a Model to Evaluate Malaria Transmission

Paul Griffin, Cielo Pasay, Suzanne Elliott, Silvana Sekuloski, Maggy Sikulu, Leon Hugo, David Khoury, Deborah Cromer, Miles Davenport, Jetsumon Sattabongkot, Karen Ivinson, Christian Ockenhouse, James McCarthy, Paul Griffin, Cielo Pasay, Suzanne Elliott, Silvana Sekuloski, Maggy Sikulu, Leon Hugo, David Khoury, Deborah Cromer, Miles Davenport, Jetsumon Sattabongkot, Karen Ivinson, Christian Ockenhouse, James McCarthy

Abstract

Background: Interventions to interrupt transmission of malaria from humans to mosquitoes represent an appealing approach to assist malaria elimination. A limitation has been the lack of systems to test the efficacy of such interventions before proceeding to efficacy trials in the field. We have previously demonstrated the feasibility of induced blood stage malaria (IBSM) infection with Plasmodium vivax. In this study, we report further validation of the IBSM model, and its evaluation for assessment of transmission of P. vivax to Anopheles stephensi mosquitoes.

Methods: Six healthy subjects (three cohorts, n = 2 per cohort) were infected with P. vivax by inoculation with parasitized erythrocytes. Parasite growth was monitored by quantitative PCR, and gametocytemia by quantitative reverse transcriptase PCR (qRT-PCR) for the mRNA pvs25. Parasite multiplication rate (PMR) and size of inoculum were calculated by linear regression. Mosquito transmission studies were undertaken by direct and membrane feeding assays over 3 days prior to commencement of antimalarial treatment, and midguts of blood fed mosquitoes dissected and checked for presence of oocysts after 7-9 days.

Results: The clinical course and parasitemia were consistent across cohorts, with all subjects developing mild to moderate symptoms of malaria. No serious adverse events were reported. Asymptomatic elevated liver function tests were detected in four of six subjects; these resolved without treatment. Direct feeding of mosquitoes was well tolerated. The estimated PMR was 9.9 fold per cycle. Low prevalence of mosquito infection was observed (1.8%; n = 32/1801) from both direct (4.5%; n = 20/411) and membrane (0.9%; n = 12/1360) feeds.

Conclusion: The P. vivax IBSM model proved safe and reliable. The clinical course and PMR were reproducible when compared with the previous study using this model. The IBSM model presented in this report shows promise as a system to test transmission-blocking interventions. Further work is required to validate transmission and increase its prevalence.

Trial registration: Anzctr.org.au ACTRN12613001008718.

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: PG and SE are employed by Q-Pharm Pty Ltd; CO and KI are employed by PATH MVI.

Figures

Fig 1. Study flow diagram.
Fig 1. Study flow diagram.
Fig 2. Most frequent adverse events (AEs)…
Fig 2. Most frequent adverse events (AEs) reported in the study due to all causes.
AE are schematized according to their causality and severity. Fever was the most common AE reported (n = 22). The majority of AEs reported were mild. Only 14 severe AEs were reported and all were attributed to malaria. Abbreviations: ALT: alanine amino transferase; AST: aspartate aminotransferase.
Fig 3. Clinical adverse events attributed to…
Fig 3. Clinical adverse events attributed to malaria infection by severity.
The majority of clinical AEs were mild with only 11 moderate and 5 severe clinical AEs attributable to malaria infection.
Fig 4. Laboratory parameters recorded as adverse…
Fig 4. Laboratory parameters recorded as adverse events.
All clinically significantly abnormal laboratory parameters are represented according to their severity. All were attributed to malaria infection. There were no significantly abnormal laboratory parameters recorded as AEs attributable to other causes. Of the 25 laboratory parameters that were recorded as AEs, 15 were abnormalities of LFTs, i.e. either an elevation of ALT or AST. The majority of laboratory AEs were moderate in severity with 2 mild and 9 severe. Abbreviations: LDH: lactate dehydrogenase; AST: aspartate aminotransferase; ALT: alanine amino transferase.
Fig 5. Liver function tests.
Fig 5. Liver function tests.
Levels of (A) ALT (alanine aminotransferase), (B) AST (aspartate aminotransferase) and (C) total bilirubin versus study day for each of the six subjects. The horizontal dotted line indicates normal range. Abbreviations: ULN: upper limit of normal; LLN: lower limit of normal).
Fig 6. Parasitemia and gametocytemia pre and…
Fig 6. Parasitemia and gametocytemia pre and post antimalarial treatment.
(A) Parasitemia as determined by qPCR of the 18S rDNA target. (B) Estimate of gametocytemia as determined by pvs25 qRT-PCR. Closed lines or “pre” depicts subjects from first parasitemia detection to treatment with artemether/lumefantrine on Day 14 as per protocol. Dashed lines or “post” represents clearance of the parasitemia following treatment. Day represents study day with inoculation occurring on Day 0.
Fig 7. Structures observed on mosquito midguts.
Fig 7. Structures observed on mosquito midguts.
(A) and (B) Oocyts observed on midguts of mosquitoes fed with P. vivax infected blood. (C) and (D) Other ovoid structures observed on midguts of mosquitoes fed with P. vivax infected blood. (E) and (F) Midguts of mosquitoes fed with non-infected blood (negative control). No structures were present on the mosquito midgut represented in panel E. Panel F illustrates ovoid structures observed on the mosquito midguts of some negative controls. Magnification: 20x in panels A, C, D and F; 10x in panel B; 4x in panel E.

References

    1. Burrows JN, Burlot E, Campo B, Cherbuin S, Jeanneret S, Leroy D, et al. Antimalarial drug discovery—the path towards eradication. Parasitology. 2014; 141: 128–139. 10.1017/S0031182013000826
    1. Held J, Kreidenweiss A, Mordmuller B. Novel approaches in antimalarial drug discovery. Expert Opin Drug Discov. 2013; 8: 1325–1337. 10.1517/17460441.2013.843522
    1. Abdul-Ghani R, Beier JC. Strategic use of antimalarial drugs that block falciparum malaria parasite transmission to mosquitoes to achieve local malaria elimination. Parasitol Res. 2014; 113: 3535–3546. 10.1007/s00436-014-4091-6
    1. Chulay JD, Schneider I, Cosgriff TM, Hoffman SL, Ballou WR, Quakyi IA, et al. Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am J Trop Med Hyg. 1986; 35: 66–68.
    1. Church LW, Le TP, Bryan JP, Gordon DM, Edelman R, Fries L, et al. Clinical manifestations of Plasmodium falciparum malaria experimentally induced by mosquito challenge. J Infect Dis. 1997; 175: 915–920.
    1. Epstein JE, Rao S, Williams F, Freilich D, Luke T, Sedegah M, et al. Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum-infected mosquitoes: an update. J Infect Dis. 2007; 196: 145–154. 10.1086/518510
    1. Lyke KE, Laurens M, Adams M, Billingsley PF, Richman A, Loyevsky M, et al. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial. PLoS One. 2010; 5: e13490 10.1371/journal.pone.0013490
    1. Laurens MB, Billingsley P, Richman A, Eappen AG, Adams M, Li T, et al. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection. PLoS One. 2013; 8: e68969 10.1371/journal.pone.0068969
    1. Shekalaghe S, Rutaihwa M, Billingsley PF, Chemba M, Daubenberger CA, James ER, et al. Controlled human malaria infection of Tanzanians by intradermal injection of aseptic, purified, cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2014; 91: 471–480. 10.4269/ajtmh.14-0119
    1. Roestenberg M, Bijker EM, Sim BK, Billingsley PF, James ER, Bastiaens GJ, et al. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2013; 88: 5–13. 10.4269/ajtmh.2012.12-0613
    1. Sheehy SH, Spencer AJ, Douglas AD, Sim BK, Longley RJ, Edwards NJ, et al. Optimising controlled human malaria infection studies using cryopreserved P. falciparum parasites administered by needle and syringe. PLoS One. 2013; 8: e65960 10.1371/journal.pone.0065960
    1. Cheng Q, Lawrence G, Reed C, Stowers A, Ranford-Cartwright L, Creasey A, et al. Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. Am J Trop Med Hyg. 1997; 57: 495–500.
    1. McCarthy JS, Sekuloski S, Griffin PM, Elliott S, Douglas N, Peatey C, et al. A pilot randomised trial of induced blood-stage Plasmodium falciparum infections in healthy volunteers for testing efficacy of new antimalarial drugs. PLoS One. 2011; 6: e21914 10.1371/journal.pone.0021914
    1. Engwerda CR, Minigo G, Amante FH, McCarthy JS. Experimentally induced blood stage malaria infection as a tool for clinical research. Trends Parasitol. 2012; 28: 515–521. 10.1016/j.pt.2012.09.001
    1. Herrera S, Fernandez O, Manzano MR, Murrain B, Vergara J, Blanco P, et al. Successful sporozoite challenge model in human volunteers with Plasmodium vivax strain derived from human donors. Am J Trop Med Hyg. 2009; 81: 740–746. 10.4269/ajtmh.2009.09-0194
    1. Herrera S, Solarte Y, Jordan-Villegas A, Echavarria JF, Rocha L, Palacios R, et al. Consistent safety and infectivity in sporozoite challenge model of Plasmodium vivax in malaria-naive human volunteers. Am J Trop Med Hyg. 2011; 84: 4–11. 10.4269/ajtmh.2011.09-0498
    1. Bennett JW, Yadava A, Tosh D, Sattabongkot J, Komisar J, Ware LA, et al. Phase 1/2a Trial of Plasmodium vivax malaria vaccine candidate VMP001/AS01B in malaria-naive adults: safety, immunogenicity, and efficacy. PLoS Negl Trop Dis. 2016; 10: e0004423 10.1371/journal.pntd.0004423
    1. Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, McCarthy WF, et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med. 2013; 369: 1381–1382. 10.1056/NEJMc1301936
    1. McCarthy JS, Griffin PM, Sekuloski S, Bright AT, Rockett R, Looke D, et al. Experimentally induced blood-stage Plasmodium vivax infection in healthy volunteers. J Infect Dis. 2013; 208: 1688–1694. 10.1093/infdis/jit394
    1. Bruce-Chwatt LJ. Bruce-Chwatt's essential malariology; 3rd ed. London, UK: Taylor & Francis Ltd. 1993.
    1. International Conference of Harmonisation (ICH). ICH Harmonised Tripartite Guideline. Clinical safety data management: definitions and standards for expedited reporting E2A. 1994.
    1. Ouédraogo AE, Guelbéogo WM, Cohuet A, Morlais I, King JG, Gonçalves BP, et al. A protocol for membrane feeding assays to determine the infectiousness of P. falciparum naturally infected individuals to Anopheles gambiae. MalariaWorld Journal. 2013; 4: 1–4.
    1. Knowles R BB. Laboratory studies on the infectivity of Anopheles stephensi. J Mal Inst India. 1943; 5: 1–29.
    1. Peters W, Ramkaran AE. The chemotherapy of rodent malaria, XXXII. The influence of p-aminobenzoic acid on the transmission of Plasmodium yoelii and P. berghei by Anopheles stephensi. Ann Trop Med Parasitol. 1980; 74: 275–282.
    1. Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987; 37: 37–41.
    1. Lobo ML, Silveira H, Ramos S, Xiao L, Matos O. Characterization of a pathogen related to Vavraia culicis detected in a laboratory colony of Anopheles stephensi. J Eukaryot Microbiol. 2006; 53 Suppl 1: S65–67.
    1. Moura H, Da Silva JL, Sodre FC, Brasil P, Wallmo K, Wahlquist S, et al. Gram-chromotrope: a new technique that enhances detection of microsporidial spores in clinical samples. J Eukaryot Microbiol. 1996; 43: 94s–95s.
    1. Snounou G, Perignon JL. Malariotherapy—insanity at the service of malariology. Adv Parasitol. 2013; 81: 223–255. 10.1016/B978-0-12-407826-0.00006-0
    1. Sattabongkot J, Maneechai N, Rosenberg R. Plasmodium vivax: gametocyte infectivity of naturally infected Thai adults. Parasitology. 1991; 102 Pt 1: 27–31.
    1. Collins WE, Sullivan JS, Galland GG, Barnwell JW, Nace D, Williams A, et al. Rio Meta strain of Plasmodium vivax in New World monkeys and anopheline mosquitoes. J Parasitol. 2004; 90: 685–688. 10.1645/GE-3361
    1. Temple R. Hy's law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Saf. 2006; 15: 241–243. 10.1002/pds.1211
    1. Reuben A. Hy's law. Hepatology. 2004; 39: 574–578. 10.1002/hep.20081
    1. Duncan CJ, Draper SJ. Controlled human blood stage malaria infection: current status and potential applications. Am J Trop Med Hyg. 2012; 86: 561–565. 10.4269/ajtmh.2012.11-0504
    1. Tangpukdee N, Thanachartwet V, Krudsood S, Luplertlop N, Pornpininworakij K, Chalermrut K, et al. Minor liver profile dysfunctions in Plasmodium vivax, P. malaria and P. ovale patients and normalization after treatment. Korean J Parasitol. 2006; 44: 295–302. 10.3347/kjp.2006.44.4.295
    1. Fredricks MG, Hoffbauer FW. A study of hepatic function in therapeutic malaria. Journal of the American Medical Association. 1945; 128: 495–499.
    1. Guttman SA, Potter HR, Hanger FM, Moore DB, Pierson PS, Moore DH. Significance of cephalin-cholesterol flocculation test in malarial fever. J Clin Invest. 1945; 24: 296–300. 10.1172/JCI101606
    1. Kopp I, Solomon HC. 1943; 205: 90–97.
    1. McMahon AEJ, Kelsey JE, Derauf DE. Hepatitis of malarial origin: clinical and pathologic study of fifty-four Korean veterans. AMA Arch Intern Med. 1954; 93: 379–386.
    1. Anand AC, Puri P. Jaundice in malaria. J Gastroenterol Hepatol. 2005; 20: 1322–1332. 10.1111/j.1440-1746.2005.03884.x
    1. Jain A, Kaushik R, Kaushik RM. Malarial hepatopathy: Clinical profile and association with other malarial complications. Acta Trop. 2016; 159: 95–105. 10.1016/j.actatropica.2016.03.031
    1. Jaiprakash H, Narayana S, Mohanraj J. Drug-induced hepatotoxicity in a tertiary care hospital in rural South India. N Am J Med Sci. 2012; 4: 90–93. 10.4103/1947-2714.93385
    1. Kochar DK, Kaswan K, Kochar SK, Sirohi P, Pal M, Kochar A, et al. A comparative study of regression of jaundice in patients of malaria and acute viral hepatitis. J Vector Borne Dis. 2006; 43: 123–129.
    1. Patwari A, Aneja S, Berry AM, Ghosh S. Hepatic dysfunction in childhood malaria. Arch Dis Child. 1979; 54: 139–141.
    1. Saya RP, Debabrata G, Saya GK. Malarial hepatopathy and its outcome in India. N Am J Med Sci. 2012; 4: 449–452. 10.4103/1947-2714.101981
    1. Whitten R, Milner DA Jr., Yeh MM, Kamiza S, Molyneux ME, Taylor TE. Liver pathology in Malawian children with fatal encephalopathy. Hum Pathol. 2011; 42: 1230–1239. 10.1016/j.humpath.2010.11.019
    1. Deroost K, Lays N, Pham TT, Baci D, Van den Eynde K, Komuta M, et al. Hemozoin induces hepatic inflammation in mice and is differentially associated with liver pathology depending on the Plasmodium strain. PLoS One. 2014; 9: e113519 10.1371/journal.pone.0113519
    1. Dey S, Guha M, Alam A, Goyal M, Bindu S, Pal C, et al. Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis. Free Radic Biol Med. 2009; 46: 271–281. 10.1016/j.freeradbiomed.2008.10.032
    1. Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. Jama. 2006; 296: 87–93. 10.1001/jama.296.1.87
    1. Krishna S, Pukrittayakamee S, Supanaranond W, ter Kuile F, Ruprah M, Sura T, et al. Fever in uncomplicated Plasmodium falciparum malaria: randomized double-'blind' comparison of ibuprofen and paracetamol treatment. Trans R Soc Trop Med Hyg. 1995; 89: 507–509.
    1. Vanderberg JP, Gwadz RW. The transmisison by mosquitoes of plasmodia in the laboratory In: Kreier JP, editor. Pathology, Vector Studies, and Culture: Academic Press; 1980. pp. 153–234.
    1. Collins WE, Jeffery GM, Roberts JM. A retrospective examination of the effect of fever and microgametocyte count on mosquito infection on humans infected with Plasmodium vivax. Am J Trop Med Hyg. 2004; 70: 638–641.
    1. Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, et al. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg. 2003; 69: 529–535.
    1. Bousema T, Dinglasan RR, Morlais I, Gouagna LC, van Warmerdam T, Awono-Ambene PH, et al. Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS One. 2012; 7: e42821 10.1371/journal.pone.0042821
    1. Diallo M, Toure AM, Traore SF, Niare O, Kassambara L, Konare A, et al. Evaluation and optimization of membrane feeding compared to direct feeding as an assay for infectivity. Malar J. 2008; 7: 248 10.1186/1475-2875-7-248
    1. Mohan BN. Comparative experimental infections in Anopheles fluviatilis and Anopheles stephensi (type) with Plasmodium falciparum welch, 1897. Indian J Malariol. 1955; 9: 81–84.
    1. McCarthy VC, Clyde DF. Comparative efficiency of Anopheles stephensi and Anopheles gambiae as vectors of drug-resistant Plasmodium falciparum from Thailand. Am J Trop Med Hyg. 1974; 23: 313
    1. Adak T, Singh OP, Das MK, Wattal S, Nanda N. Comparative susceptibility of three important malaria vectors Anopheles stephensi, Anopheles fluviatilis, and Anopheles sundaicus to Plasmodium vivax. J Parasitol. 2005; 91: 79–82. 10.1645/GE-3514
    1. Graves PM. Studies on the use of a membrane feeding technique for infecting Anopheles gambiae with Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1980; 74: 738–742.
    1. Boudin C, Olivier M, Molez JF, Chiron JP, Ambroise-Thomas P. High human malarial infectivity to laboratory-bred Anopheles gambiae in a village in Burkina Faso. Am J Trop Med Hyg. 1993; 48: 700–706.
    1. Coleman RE, Kumpitak C, Ponlawat A, Maneechai N, Phunkitchar V, Rachapaew N, et al. Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. J Med Entomol. 2004; 41: 201–208.
    1. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, et al. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007; 76: 470–474.
    1. Vallejo AF, Garcia J, Amado-Garavito AB, Arevalo-Herrera M, Herrera S. Plasmodium vivax gametocyte infectivity in sub-microscopic infections. Malar J. 2016; 15: 48 10.1186/s12936-016-1104-1
    1. Schneider P, Reece SE, van Schaijk BC, Bousema T, Lanke KH, Meaden CS, et al. Quantification of female and male Plasmodium falciparum gametocytes by reverse transcriptase quantitative PCR. Mol Biochem Parasitol. 2015; 199: 29–33. 10.1016/j.molbiopara.2015.03.006
    1. Bounkeua V, Li F, Chuquiyauri R, Abeles SR, McClean CM, Neyra V, et al. Lack of molecular correlates of Plasmodium vivax ookinete development. Am J Trop Med Hyg. 2011; 85: 207–213. 10.4269/ajtmh.2011.10-0729
    1. Chansamut N, Buates S, Takhampunya R, Udomsangpetch R, Bantuchai S, Sattabongkot J. Correlation of Pfg377 ortholog gene expression of Plasmodium vivax and mosquito infection. Trop Med Int Health. 2012; 17: 414–422. 10.1111/j.1365-3156.2011.02940.x
    1. Tachibana M, Suwanabun N, Kaneko O, Iriko H, Otsuki H, Sattabongkot J, et al. Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization. Vaccine. 2015; 33: 1901–1908. 10.1016/j.vaccine.2015.03.008

Source: PubMed

3
Abonneren