Postmortem fetal magnetic resonance imaging: where do we stand?

Aurélie D'Hondt, Marie Cassart, Raymond De Maubeuge, Gustavo Soto Ares, Jacques Rommens, E Fred Avni, Aurélie D'Hondt, Marie Cassart, Raymond De Maubeuge, Gustavo Soto Ares, Jacques Rommens, E Fred Avni

Abstract

Postmortem fetal magnetic resonance imaging (PMFMRI) is increasingly used thanks to its good overall concordance with histology paralleling the rising incidence of parental refusal of autopsy. The technique could become a routine clinical examination but it needs to be standardized and conducted by trained radiologists. Such radiologists should be aware of not only the (congenital and acquired) anomalies that can involve the fetus, but also of the "physiological" postmortem changes. In this article, we intend to focus on the contribution of PMFMRI based on the existing literature and on our own experience, as we presently perform the technique routinely in our clinical practice.

Key points: • Concordance rates between PMFMRI and autopsy are high for detecting fetal pathologies. • PMFMRI is more acceptable for parents than traditional autopsy. • PMFMRI is becoming widely used as a part of the postmortem investigations. • A dedicated radiologist needs to learn to interpret correctly a PMFMRI. • PMFMRI can be easily realized in daily clinical practice.

Keywords: Autopsy; Fetus; Magnetic resonance imaging; Perinatal; Postmortem.

Figures

Fig. 1
Fig. 1
Coronal T1-weighted (W) image of a 24 weeks gestation fetus showing the normal T1 hypersignal of the meconium and thyroid. The fetal liver appears relatively hypersignal, probably due to high glycogen content
Fig. 2
Fig. 2
Coronal T2-W image of a 25 weeks fetus in a case of intrauterine death. There is bilateral pleural effusion, subcutaneous edema, ascitis, distended bowel loops, and enlarged appearance of the normal fetal liver. All findings are physiological postmortem changes
Fig. 3
Fig. 3
Axial T2-W image of the brain of a 20 weeks fetus showing bilateral intraventricular hemorrhage as a normal postmortem change
Fig. 4
Fig. 4
Postmortem fetal magnetic resonance imaging (PMFMRI) in a term stillbirth. Physiological postmortem changes. a Coronal T2-W image showing dark appearance of the lungs containing air. b Axial T2-W image showing air in the hepatobiliary system
Fig. 5
Fig. 5
Axial T2-W image of a 23 weeks fetus showing air and blood clots in the heart as a physiological postmortem change. It also shows the normal gray appearance of fetal lungs that have not been aerated
Fig. 6
Fig. 6
PMFMRI of a 21 weeks gestation fetus who died in utero. Axial T2-W image shows indirect signs of corpus callosum agenesis. Note that there is a subcutaneous edema that has to be considered as a normal postmortem change
Fig. 7
Fig. 7
PMFMRI of a 22 weeks gestation fetus, for which the pregnancy was interrupted for extensive spinal dysraphism. a Axial T2-W image shows bilateral ventriculomegaly. There is a small hemorrhage in the occipital horns that is considered as a postmortem change. b Sagittal T2-W image shows a close spinal dysraphism (asterisk)
Fig. 8
Fig. 8
PMFMRI of a 25 weeks gestation fetus in a case of late miscarriage. Sagittal T2-W image shows an occipital encephalocele
Fig. 9
Fig. 9
PMFMRI of an 18 weeks gestation fetus in a case of termination of pregnancy. a Sagittal T2-W image shows a megabladder and dilated posterior urethra above the posterior urethral valves (arrow). b Coronal T2-W image shows a right multicystic dysplastic kidney and left hydronephrosis
Fig. 10
Fig. 10
Sagittal T2-W image of a 25 weeks gestation fetus with an abdominal wall defect and a large hepatocele
Fig. 11
Fig. 11
Coronal T2-W image of a 25 weeks gestation fetus with a left congenial diaphragmatic hernia

References

    1. Dickinson JE, Prime DK, Charles AK. The role of autopsy following pregnancy termination for fetal abnormality. Aust N Z J Obstet Gynaecol. 2007;47(6):445–449. doi: 10.1111/j.1479-828X.2007.00777.x.
    1. Piercecchi-Marti MD, Liprandi A, Sigaudy S, et al. Value of fetal autopsy after medical termination of pregnancy. Forensic Sci Int. 2004;144(1):7–10. doi: 10.1016/j.forsciint.2004.01.022.
    1. Addison S, Arthurs OJ, Thayyil S. Post-mortem MRI as an alternative to non-forensic autopsy in foetuses and children: from research into clinical practice. Br J Radiol. 2014;87(1036):20130621. doi: 10.1259/bjr.20130621.
    1. Shojania KG, Burton EC. The vanishing nonforensic autopsy. N Engl J Med. 2008;358(9):873–875. doi: 10.1056/NEJMp0707996.
    1. Arthurs OJ, Taylor AM, Sebire NJ. Indications, advantages and limitations of perinatal postmortem imaging in clinical practice. Pediatr Radiol. 2015;45(4):491–500. doi: 10.1007/s00247-014-3165-z.
    1. Ben-Sasi K, Chitty LS, Franck LS, et al. Acceptability of a minimally invasive perinatal/paediatric autopsy: healthcare professionals' views and implications for practice. Prenat Diagn. 2013;33(4):307–312.
    1. Lewis C, Hill M, Arthurs OJ, Hutchinson C, Chitty LS, Sebire NJ. Factors affecting uptake of postmortem examination in the prenatal, perinatal and paediatric setting. BJOG. 2018;125(2):172–181. doi: 10.1111/1471-0528.14600.
    1. Arthurs OJ, van Rijn RR, Sebire NJ. Current status of paediatric post-mortem imaging: an ESPR questionnaire-based survey. Pediatr Radiol. 2014;44(3):244–251. doi: 10.1007/s00247-013-2827-6.
    1. Thayyil S, Sebire NJ, Chitty LS, et al. Taylor AM; MARIAS collaborative group. Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013;382(9888):223–233. doi: 10.1016/S0140-6736(13)60134-8.
    1. Jawad N, Sebire NJ, Wade A, Taylor AM, Chitty LS, Arthurs OJ. Body weight lower limits of fetal postmortem MRI at 1.5 T. Ultrasound Obstet Gynecol. 2016;48(1):92–97. doi: 10.1002/uog.14948.
    1. D’Hondt A, D’Haene N, Rommens J, Cassart M, Avni EF. The contribution of mid-trimester virtual autopsy with MR imaging. Pediatr Radiol. 2017;47(suppl 2):S297–S421.
    1. Sarda-Quarello L, Tuchtan L, Bartoli C, et al. Post-mortem perinatal imaging: state of the art and perspectives, with an emphasis on ultrasound. Gynecol Obstet Fertil. 2015;43(9):612–615. doi: 10.1016/j.gyobfe.2015.07.020.
    1. Thayyil S, Sebire NJ, Chitty LS, et al. Post mortem magnetic resonance imaging in the fetus, infant and child: a comparative study with conventional autopsy (MaRIAS protocol) BMC Pediatr. 2011;11:120. doi: 10.1186/1471-2431-11-120.
    1. Kang X, Cannie MM, Arthurs OJ, et al. Post-mortem whole-body magnetic resonance imaging of human fetuses: a comparison of 3-T vs. 1.5-T MR imaging with classical autopsy. Eur Radiol. 2017;27(8):3542–3553. doi: 10.1007/s00330-016-4725-4.
    1. Judge-Kronis L, Hutchinson JC, Sebire NJ, Arthurs OJ. Consent for paediatric and perinatal postmortem investigations: implications of less invasive autopsy. J Forensic Radiol Imaging. 2016;4:7–11. doi: 10.1016/j.jofri.2015.12.001.
    1. Norman W, Jawad N, Jones R, Taylor AM, Arthurs OJ. Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. Br J Radiol. 2016;89(1062):20151028. doi: 10.1259/bjr.20151028.
    1. Scola E, Conte G, Palumbo G, et al. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation: normal foetal brain development. Eur Radiol. 2018;28(1):363–371. doi: 10.1007/s00330-017-4965-y.
    1. Papadopoulou I, Langan D, Sebire NJ, Jacques TS, Arthurs OJ. Diffusion-weighted post-mortem magnetic resonance imaging of the human fetal brain in situ. Eur J Radiol. 2016;85(6):1167–1173. doi: 10.1016/j.ejrad.2016.03.024.
    1. Arthurs OJ, Barber JL, Taylor AM, Sebire NJ. Normal perinatal and paediatric postmortem magnetic resonance imaging appearances. Pediatr Radiol. 2015;45(4):527–535. doi: 10.1007/s00247-014-3166-y.
    1. Barber JL, Sebire NJ, Chitty LS, Taylor AM, Arthurs OJ. Lung aeration on post-mortem magnetic resonance imaging is a useful marker of live birth versus stillbirth. Int J Legal Med. 2015;129(3):531–536. doi: 10.1007/s00414-014-1125-7.
    1. Arthurs OJ, Thayyil S, Olsen OE, et al. Owens CM; magnetic resonance imaging autopsy study (MaRIAS) collaborative group. Diagnostic accuracy of post-mortem MRI for thoracic abnormalities in fetuses and children. Eur Radiol. 2014;24(11):2876–2884. doi: 10.1007/s00330-014-3313-8.
    1. Arthurs OJ, Hutchinson JC, Sebire NJ. Current issues in postmortem imaging of perinatal and forensic childhood deaths. Forensic Sci Med Pathol. 2017;13(1):58. doi: 10.1007/s12024-016-9821-x.
    1. Arthurs OJ, Thayyil S, Pauliah SS, et al. Diagnostic accuracy and limitations of post-mortem MRI for neurological abnormalities in fetuses and children. Clin Radiol. 2015;70(8):872–880. doi: 10.1016/j.crad.2015.04.008.
    1. Arthurs OJ, Thayyil S, Owens CM, et al. Magnetic resonance imaging autopsy study (MaRIAS) collaborative group. Diagnostic accuracy of post mortem MRI for abdominal abnormalities in foetuses and children. Eur J Radiol. 2015;84(3):474–481. doi: 10.1016/j.ejrad.2014.11.030.
    1. Taylor AM, Sebire NJ, Ashworth MT, et al. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: a masked comparison study with conventional autopsy. Circulation. 2014;129(19):1937–1944. doi: 10.1161/CIRCULATIONAHA.113.005641.
    1. Arthurs OJ, Thayyil S, Addison S, et al. Diagnostic accuracy of postmortem MRI for musculoskeletal abnormalities in fetuses and children. Prenat Diagn. 2014;34(13):1254–1261. doi: 10.1002/pd.4460.
    1. Breeze AC, Gallagher FA, Lomas DJ, Smith GC, Lees CC, Cambridge Post-Mortem MRI Study Group Postmortem fetal organ volumetry using magnetic resonance imaging and comparison to organ weights at conventional autopsy. Ultrasound Obstet Gynecol. 2008;31(2):187–193. doi: 10.1002/uog.5199.
    1. Ashwin C, Hutchinson JC, Kang X, et al. Learning effect on perinatal post-mortem magnetic resonance imaging reporting: single reporter diagnostic accuracy of 200 cases. Prenat Diagn. 2017;37(6):566–574. doi: 10.1002/pd.5043.
    1. Hutchinson JC, Arthurs OJ, Sebire NJ. Postmortem research: innovations and future directions for the perinatal and paediatric autopsy. Arch Dis Child Educ Pract Ed. 2016;101(1):54–56. doi: 10.1136/archdischild-2015-309321.

Source: PubMed

3
Abonnere