In-car nocturnal blue light exposure improves motorway driving: a randomized controlled trial

Jacques Taillard, Aurore Capelli, Patricia Sagaspe, Anna Anund, Torbjorn Akerstedt, Pierre Philip, Jacques Taillard, Aurore Capelli, Patricia Sagaspe, Anna Anund, Torbjorn Akerstedt, Pierre Philip

Abstract

Prolonged wakefulness greatly decreases nocturnal driving performance. The development of in-car countermeasures is a future challenge to prevent sleep-related accidents. The aim of this study is to determine whether continuous exposure to monochromatic light in the short wavelengths (blue light), placed on the dashboard, improves night-time driving performance. In this randomized, double-blind, placebo-controlled, cross-over study, 48 healthy male participants (aged 20-50 years) drove 400 km (250 miles) on motorway during night-time. They randomly and consecutively received either continuous blue light exposure (GOLite, Philips, 468 nm) during driving or 2*200 mg of caffeine or placebo of caffeine before and during the break. Treatments were separated by at least 1 week. The outcomes were number of inappropriate line crossings (ILC) and mean standard deviation of the lateral position (SDLP). Eight participants (17%) complained about dazzle during blue light exposure and were removed from the analysis. Results from the 40 remaining participants (mean age ± SD: 32.9±11.1) showed that countermeasures reduced the number of inappropriate line crossings (ILC) (F(2,91.11) = 6.64; p<0.05). Indeed, ILC were lower with coffee (12.51 [95% CI, 5.86 to 19.66], p = 0.001) and blue light (14.58 [CI, 8.75 to 22.58], p = 0.003) than with placebo (26.42 [CI, 19.90 to 33.71]). Similar results were found for SDLP. Treatments did not modify the quality, quantity and timing of 3 subsequent nocturnal sleep episodes. Despite a lesser tolerance, a non-inferior efficacy of continuous nocturnal blue light exposure compared with caffeine suggests that this in-car countermeasure, used occasionally, could be used to fight nocturnal sleepiness at the wheel in blue light-tolerant drivers, whatever their age. More studies are needed to determine the reproducibility of data and to verify if it can be generalized to women.

Trial registration: ClinicalTrials.gov NCT01070004.

Conflict of interest statement

Competing Interests: Dr. Akerstedt has consulted for: Sanofi, AstraZeneca, Johnson&Johnson, Hästens, Apoteksbolaget. Dr. Philip reported receiving payment for lectures from UCB. PHILIPS provided two portable blue lights (goLITE BLU®) for this study and VINCI autoroute/ASF allowed the authors to use their highways for research. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Participant flow: The numbers of…
Figure 1. Participant flow: The numbers of participants who were randomly assigned, received intended treatment and were analyzed for the primary outcome.
Figure 2. Protocol Design: sleep-driving period for…
Figure 2. Protocol Design: sleep-driving period for the three substance conditions (placebo, coffee and blue light).
Figure 3. Driving Performance: Mean cumulative number…
Figure 3. Driving Performance: Mean cumulative number of inappropriate line crossings in all substance conditions.
* P

References

    1. Akerstedt T, Philip P, Capelli A, Kecklund G (2011) Sleep loss and accidents–work hours, life style, and sleep pathology. Prog Brain Res 190: 169–188.
    1. Lockley SW, Evans EE, Scheer FA, Brainard GC, Czeisler CA, et al. (2006) Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29: 161–168.
    1. Philip P, Taillard J, Moore N, Delord S, Valtat C, et al. (2006) The effects of coffee and napping on nighttime highway driving: a randomized trial. Ann Intern Med 144: 785–791.
    1. Sagaspe P, Taillard J, Chaumet G, Moore N, Bioulac B, et al. (2007) Aging and nocturnal driving: better with coffee or a nap? A randomized study. Sleep 30: 1808–1813.
    1. Anund A, Kecklund G, Peters B, Akerstedt T (2008) Driver sleepiness and individual differences in preferences for countermeasures. J Sleep Res 17: 16–22.
    1. Reyner LA, Horne JA (1998) Evaluation “in-car” countermeasures to sleepiness: cold air and radio. Sleep 21: 46–50.
    1. Schwarz JFA, Ingre M, Fors C, Anund A, Kecklund G, et al. (in press) In-car countermeasures open window and music revisited on the real road: popular but hardly effective against driver sleepiness.
    1. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070–1073.
    1. Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23: 7093–7106.
    1. Chellappa SL, Steiner R, Blattner P, Oelhafen P, Gotz T, et al. (2011) Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One 6: e16429.
    1. Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, et al. (2005) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light. J Clin Endocrinol Metab 90: 1311–1316.
    1. Derogatis LRS (2000) K.L (2000) The SCL-90-R and the Brief Symptom Inventory (BSI) in Primary Care In: M.E.Maruish. Handbook of psychological assessment in primary care settings 236: 297–334.
    1. Partinen M, Gislason T (1995) Basic Nordic Sleep Questionnaire (BNSQ): a quantitated measure of subjective sleep complaints. J Sleep Res 4: 150–155.
    1. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14: 540–545.
    1. Sagberg F (1999) Road accidents caused by drivers falling asleep. Accid Anal Prev 31: 639–649.
    1. O'Hanlon JF, Ramaekers JG (1995) Antihistamine effects on actual driving performance in a standard test: a summary of Dutch experience, 1989–94. Allergy 50: 234–242.
    1. O'Hanlon JF, Volkerts ER (1986) Hypnotics and actual driving performance. Acta Psychiatr Scand Suppl 332: 95–104.
    1. Ramaekers JG, O'Hanlon JF (1994) Acrivastine, terfenadine and diphenhydramine effects on driving performance as a function of dose and time after dosing. Eur J Clin Pharmacol 47: 261–266.
    1. Pack AI, Pack AM, Rodgman E, Cucchiara A, Dinges DF, et al. (1995) Characteristics of crashes attributed to the driver having fallen asleep. Accid Anal Prev 27: 769–775.
    1. Philip P, Sagaspe P, Moore N, Taillard J, Charles A, et al. (2005) Fatigue, sleep restriction and driving performance. Accid Anal Prev 37: 473–478.
    1. Philip P, Sagaspe P, Taillard J, Valtat C, Moore N, et al. (2005) Fatigue, sleepiness, and performance in simulated versus real driving conditions. Sleep 28: 1511–1516.
    1. Verster JC, de Weert AM, Bijtjes SI, Aarab M, van Oosterwijck AW, et al. (2003) Driving ability after acute and sub-chronic administration of levocetirizine and diphenhydramine: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 169: 84–90.
    1. Turner PL, Mainster MA (2008) Circadian photoreception: ageing and the eye's important role in systemic health. Br J Ophthalmol 92: 1439–1444.
    1. Chellappa (2012) Human Melatonin and Alerting Response to Blue-Enriched Light Depend on a Polymorphism in the Clock Gene PER3. The Journal of clinical endocrinology et metabolism
    1. Sagaspe P, Taillard J, Akerstedt T, Bayon V, Espie S, et al. (2008) Extended driving impairs nocturnal driving performances. PLoS One 3: e3493.
    1. Verster JC, Taillard J, Sagaspe P, Olivier B, Philip P (2011) Prolonged nocturnal driving can be as dangerous as severe alcohol-impaired driving. J Sleep Res 20: 585–588.
    1. Phipps-Nelson J, Redman JR, Schlangen LJ, Rajaratnam SM (2009) Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing. Chronobiol Int 26: 891–912.
    1. Viola AU, James LM, Schlangen LJ, Dijk DJ (2008) Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality. Scand J Work Environ Health 34: 297–306.
    1. Adam M, Retey JV, Khatami R, Landolt HP (2006) Age-related changes in the time course of vigilant attention during 40 hours without sleep in men. Sleep 29: 55–57.
    1. Duffy JF, Willson HJ, Wang W, Czeisler CA (2009) Healthy older adults better tolerate sleep deprivation than young adults. J Am Geriatr Soc 57: 1245–1251.
    1. Philip P, Taillard J, Sagaspe P, Valtat C, Sanchez-Ortuno M, et al. (2004) Age, performance and sleep deprivation. J Sleep Res 13: 105–110.
    1. Blatter K, Graw P, Munch M, Knoblauch V, Wirz-Justice A, et al. (2006) Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions. Behav Brain Res 168: 312–317.
    1. Anderson JL, Glod CA, Dai J, Cao Y, Lockley SW (2009) Lux vs. wavelength in light treatment of Seasonal Affective Disorder. Acta Psychiatr Scand 120: 203–212.
    1. Algvere PV, Marshall J, Seregard S (2006) Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand 84: 4–15.
    1. Wright KP Jr, Badia P (1999) Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation. Behav Brain Res 103: 185–194.

Source: PubMed

3
Abonnere