Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis

Eric Lefebvre, Graeme Moyle, Ran Reshef, Lee P Richman, Melanie Thompson, Feng Hong, Hsin-L Chou, Taishi Hashiguchi, Craig Plato, Dominic Poulin, Toni Richards, Hiroyuki Yoneyama, Helen Jenkins, Grushenka Wolfgang, Scott L Friedman, Eric Lefebvre, Graeme Moyle, Ran Reshef, Lee P Richman, Melanie Thompson, Feng Hong, Hsin-L Chou, Taishi Hashiguchi, Craig Plato, Dominic Poulin, Toni Richards, Hiroyuki Yoneyama, Helen Jenkins, Grushenka Wolfgang, Scott L Friedman

Abstract

Background & aims: Interactions between C-C chemokine receptor types 2 (CCR2) and 5 (CCR5) and their ligands, including CCL2 and CCL5, mediate fibrogenesis by promoting monocyte/macrophage recruitment and tissue infiltration, as well as hepatic stellate cell activation. Cenicriviroc (CVC) is an oral, dual CCR2/CCR5 antagonist with nanomolar potency against both receptors. CVC's anti-inflammatory and antifibrotic effects were evaluated in a range of preclinical models of inflammation and fibrosis.

Methods: Monocyte/macrophage recruitment was assessed in vivo in a mouse model of thioglycollate-induced peritonitis. CCL2-induced chemotaxis was evaluated ex vivo on mouse monocytes. CVC's antifibrotic effects were evaluated in a thioacetamide-induced rat model of liver fibrosis and mouse models of diet-induced non-alcoholic steatohepatitis (NASH) and renal fibrosis. Study assessments included body and liver/kidney weight, liver function test, liver/kidney morphology and collagen deposition, fibrogenic gene and protein expression, and pharmacokinetic analyses.

Results: CVC significantly reduced monocyte/macrophage recruitment in vivo at doses ≥20 mg/kg/day (p < 0.05). At these doses, CVC showed antifibrotic effects, with significant reductions in collagen deposition (p < 0.05), and collagen type 1 protein and mRNA expression across the three animal models of fibrosis. In the NASH model, CVC significantly reduced the non-alcoholic fatty liver disease activity score (p < 0.05 vs. controls). CVC treatment had no notable effect on body or liver/kidney weight.

Conclusions: CVC displayed potent anti-inflammatory and antifibrotic activity in a range of animal fibrosis models, supporting human testing for fibrotic diseases. Further experimental studies are needed to clarify the underlying mechanisms of CVC's antifibrotic effects. A Phase 2b study in adults with NASH and liver fibrosis is fully enrolled (CENTAUR Study 652-2-203; NCT02217475).

Conflict of interest statement

Competing Interests: EL and HJ are employees of Tobira Therapeutics, Inc. GM is on the Scientific Advisory Board of Tobira Therapeutics, Inc. and has served on the Board of Directors of Tobira Therapeutics, Inc. and holds stock options in Tobira Therapeutics, Inc. RR, FH, HC, TH and HY have received research funding from Tobira Therapeutics, Inc. LPR, CP, DP and TR have no conflicts of interest to declare. MT is a member of an institution that received clinical trial funding or research grants from Tobira Therapeutics, Inc. GW is a consultant for Tobira Therapeutics, Inc. and holds stock options in Tobira Therapeutics, Inc. SLF is on the Scientific Advisory Board of Tobira Therapeutics, Inc., has performed research studies supported by Tobira Therapeutics, Inc. and holds stock options in Tobira Therapeutics, Inc. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. CVC Effect on Monocyte/Macrophage Migration.
Fig 1. CVC Effect on Monocyte/Macrophage Migration.
(A) Monocyte/macrophage recruitment reduced in TG-induced mouse model of peritonitis after pre-treatment with CVC (PO BID or QD dosing); (B) cenicriviroc (1 μM) inhibits CCL2-mediated chemotaxis of activated murine macrophages (F4/80+/CD11b+) ex vivo. *p < 0.05 vs. TG + vehicle control; **p < 0.01 vs. TG + vehicle control; ***p < 0.001 vs. TG + vehicle control; † p < 0.001 vs. TG + DEX; ‡ p = 0.018 vs. vehicle control. aVehicle control: 0.5% [w/v] methylcellulose + 1% Tween®-80 (pH ~1.3). BID, twice daily; CCL2, C-C chemokine ligand 2; CVC, cenicriviroc; CVC5, CVC 5 mg/kg/day; CVC20, CVC 20 mg/kg/day; CVC100, CVC 100 mg/kg/day; DEX, dexamethasone; PO, oral gavage; QD, once daily; SEM, standard error of the mean; TG, thioglycollate.
Fig 2. Reduction of Plasma ALT Levels…
Fig 2. Reduction of Plasma ALT Levels in NASH Model.
*p < 0.05 vs. vehicle control. aVehicle control: 0.5% [w/v] methylcellulose + 1% Tween®-80 (pH ~1.3). ALT, alanine aminotransferase; BID, twice daily; CVC, cenicriviroc; CVC20, CVC 20 mg/kg/day; CVC100, CVC 100 mg/kg/day; NASH, non-alcoholic steatohepatitis; SD, standard deviation.
Fig 3. Reduction in Fibrosis.
Fig 3. Reduction in Fibrosis.
(A) Representative micrographs of Sirius red-stained liver sections in the rat TAA model (early intervention and established fibrosis; 100x), mouse NASH model (200x) and mouse UUO model (200x). (B) Reduction in collagen deposition in the rat TAA model (early intervention and established fibrosis), mouse NASH modela and mouse UUO modelb. *p < 0.05 vs. sham control; **p < 0.01 vs. vehicle control; ***p < 0.001 vs. vehicle control; †p < 0.05 vs. UUO + vehicle control. aPerivascular area subtracted; bData presented exclude a single outlier from an animal in the CVC20 group, which had a CVF value >2 SDs higher than any other animal in the group. CVF, Collagen Volume Fraction; CVC, cenicriviroc; NASH, non-alcoholic steatohepatitis; SD, standard deviation; SEM, standard error of the mean; TAA, thioacetamide; UUO, unilateral ureteral obstruction.
Fig 4. CVC Effects on Extracellular Matrix…
Fig 4. CVC Effects on Extracellular Matrix Protein Content.
Mean expression of (A) collagen type I and (B) alpha-SMA in the TAA model compared to vehicle control; mean expression of hydroxyproline content in (C) NASH model and (D) UUO model. alpha-SMA, alpha-smooth muscle actin; BID, twice daily; CVC, cenicriviroc; NASH, non-alcoholic steatohepatitis; QD, once daily; SD, standard deviation; TAA, thioacetamide; UUO, unilateral ureter obstruction.

References

    1. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64: 830–841. 10.1136/gutjnl-2014-306842
    1. Lim YS, Kim WR. The global impact of hepatic fibrosis and end-stage liver disease. Clin Liver Dis. 2008;12: 733–746. 10.1016/j.cld.2008.07.007
    1. Eddy AA. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl. 2014;4: 2–8.
    1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382: 260–272. 10.1016/S0140-6736(13)60687-X
    1. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61: 416–426. 10.1136/gutjnl-2011-300304
    1. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60: 1090–1096. 10.1016/j.jhep.2013.12.025
    1. Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58: 1461–1473. 10.1002/hep.26429
    1. De Minicis S, Seki E, Uchinami H, Kluwe J, Zhang Y, Brenner DA, et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology. 2007;132: 1937–1946.
    1. Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol. 2012;3: 213 10.3389/fphys.2012.00213
    1. Seki E, De Minicis S, Gwak GY, Kluwe J, Inokuchi S, Bursill CA, et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest. 2009;119: 1858–1870.
    1. Seki E, De Minicis S, Inokuchi S, Taura K, Miyai K, van Rooijen N, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50: 185–197. 10.1002/hep.22952
    1. Zimmermann HW, Tacke F. Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm Allergy Drug Targets. 2011;10: 509–536.
    1. Mitchell C, Couton D, Couty JP, Anson M, Crain AM, Bizet V, et al. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am J Pathol. 2009;174: 1766–1775. 10.2353/ajpath.2009.080632
    1. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302: G1310–G1321. 10.1152/ajpgi.00365.2011
    1. Berres ML, Koenen RR, Rueland A, Zaldivar MM, Heinrichs D, Sahin H, et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest. 2010;120: 4129–4140. 10.1172/JCI41732
    1. Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 2010;78: 883–894. 10.1038/ki.2010.263
    1. Panzer U, Steinmetz OM, Stahl RA, Wolf G. Kidney diseases and chemokines. Curr Drug Targets. 2006;7: 65–80.
    1. Segerer S, Mac K M, Regele H, Kerjaschki D, Schlöndorff D. Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney Int. 1999;56: 52–64.
    1. Vielhauer V, Anders HJ, MacK M, Cihak J, Strutz F, Stangassinger M, et al. Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. J Am Soc Nephrol. 2001;12: 1173–1187.
    1. Xia Y, Entman ML, Wang Y. CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis. PLoS One. 2013;8: e77493 10.1371/journal.pone.0077493
    1. Lalezari J, Gathe J, Brinson C, Thompson M, Cohen C, Dejesus E, et al. Safety, efficacy, and pharmacokinetics of TBR-652, a CCR5/CCR2 antagonist, in HIV-1-infected, treatment-experienced, CCR5 antagonist-naive subjects. J Acquir Immune Defic Syndr. 2011;57: 118–125. 10.1097/QAI.0b013e318213c2c0
    1. Marier JF, Trinh M, Pheng LH, Palleja SM, Martin DE. Pharmacokinetics and pharmacodynamics of TBR-652, a novel CCR5 antagonist, in HIV-1-infected, antiretroviral treatment-experienced, CCR5 antagonist-naïve patients. Antimicrob Agents Chemother. 2011;55: 2768–2774. 10.1128/AAC.00713-10
    1. Baba M, Takashima K, Miyake H, Kanzaki N, Teshima K, Wang X, et al. TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother. 2005;49: 4584–4591.
    1. Kuroshima,K, Inanami M, Kanzaki N, Takeda Chemical Industries, Ltd. Receptor binding properties of TAK-652, a small molecular weight CCR5 antagonist (Report No. TAK-652/00045). 2003.
    1. Lefebvre E, Gottwald M, Lasseter K, Chang W, Willett M, Smith PF, et al. Pharmacokinetics, Safety, and CCR2/CCR5 Antagonist Activity of Cenicriviroc in Participants With Mild or Moderate Hepatic Impairment. Clin Transl Sci. 2016;9: 139–148. 10.1111/cts.12397
    1. Thompson M, Saag M, Dejesus E, Gathe J, Lalezari J, Landay AL, et al. A 48-week randomized Phase 2b study evaluating cenicriviroc vs. efavirenz in treatment-naive HIV-infected adults with CCR5-tropic virus. AIDS. 2016;30: 869–878. 10.1097/QAD.0000000000000988
    1. Friedman SL, Sanyal A, Goodman Z, Lefebvre E, Gottwald M, Fischer L, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp Clin Trials. 2016;47: 356–365. 10.1016/j.cct.2016.02.012
    1. Jalbert E, Byron MM, Shikuma C, Jenkins H, Lefebvre E, Barbour JD. Cenicriviroc achieves high CCR5 receptor occupancy at low nanomolar concentrations. Presented at: 21st Conference on Retroviruses and Opportunistic Infections (CROI 2014); 2014 Mar 3; Boston, MA, USA. 530.
    1. Byron MM, D'Antoni ML, Premeaux T, Lefebvre E, Ndhlovu LC. Dual CCR2/CCR5 antagonism by cenicriviroc efficiently inhibits both MCP-1 and RANTES induced chemokine receptor internalization in murine pro-inflammatory monocytes. Presented at: Immunology 2015™—The American Association of Immunologists (AAI) Annual Meeting; 2015 May 11; New Orleans, LA, USA.
    1. Tobira Therapeutics, Inc., Ndhlovu Laboratory. In Vitro CCR2 and CCR5 Receptor Affinity Studies of Cenicriviroc Mesylate CVC (TBR-652), Maraviroc (MVC) or BMS-22, on Murine Blood and Splenic Monocytes (Study Number 652-9-1024). 2015.
    1. Hayashi H, Sakai T. Animal models for the study of liver fibrosis: new insights from knockout mouse models. Am J Physiol Gastrointest Liver Physiol. 2011;300: G729–G738. 10.1152/ajpgi.00013.2011
    1. Ucero AC, Benito-Martin A, Izquierdo MC, Sanchez-Niño MD, Sanz AB, Ramos AM, et al. Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol. 2014;46: 765–776. 10.1007/s11255-013-0520-1
    1. Kanuri G, Bergheim I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci. 2013;14: 11963–11980. 10.3390/ijms140611963
    1. Henderson RB, Hobbs JA, Mathies M, Hogg N. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood. 2003;102: 328–335.
    1. Reshef R, Luger SM, Hexner EO, Loren AW, Frey NV, Nasta SD, et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med. 2012;367: 135–145. 10.1056/NEJMoa1201248
    1. Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 2013;8: e75361 10.1371/journal.pone.0075361
    1. Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, Suzuki K, et al. A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol. 2013;46: 141–152. 10.1007/s00795-013-0016-1
    1. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41: 1313–1321.
    1. Byron MM, D'Antoni ML, Premeaux T, Lefebvre E, Ndhlovu LC. Dual CCR2/CCR5 antagonism by cenicriviroc efficiently inhibits both MCP-1 and RANTES induced chemokine receptor internalization in murine pro-inflammatory monocytes. J Immunol. 2015;194: 187–8..
    1. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147: 577–594. 10.1053/j.gastro.2014.06.043
    1. Krenkel O, Mossanen JC, Ergen C, Heymann F, Lefebvre E, Eulberg D, et al. CCR2+ infiltrating monocytes promote acetaminophen-induced acute liver injury—therapeutic implications of inhibiting CCR2 and CCL2. J Hepatol. 2015;62: S206.
    1. Krenkel O, Püngel T, Mossanen J, Ergen C, Heymann F, Lefebvre E, et al. Dual CCR2/CCR5 anatagonist cenicriviroc leads to potent and significant reduction in proinflammatory CCR2+ monocyte infiltration in experimental acute liver injury. Presented at: The 66th Annual Meeting of the American Association for the Study of Liver Diseases: The Liver Meeting 2015; 2015 Nov 17; San Francisco, CA, USA. 1756.
    1. Puengel T, Krenkel O, Mossanen J, Longerich E, Lefebvre E, Trautwein C, et al. The dual CCR2/CCR5 antagonist cenicriviroc ameliorates steatohepatitis and fibrosis in vivo by inhibiting the infiltration of inflammatory monocytes into injured liver. J Hepatol. 64: s159–s182.
    1. Thompson M, Chang W, Jenkins H, Flynt A, Gottwald M, Lefebvre E. Improvements in APRI and FIB-4 fibrosis scores correlate with decreases in sCD14 in HIV-1 infected adults receiving cenicriviroc over 48 weeks. Hepatology 2014;60: 424A.
    1. Sherman KE, Abdel-Hameed E, Rouster SD. CCR2/CCR5 antagonism with cenicriviroc decreases fibrosis scores in HIV-infected patients. Presented at: HEP DART 2015, Frontiers in Drug Development for Viral Hepatitis; 2015 Dec 6; Hawaii, USA.
    1. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 2001;120: 1183–1192.
    1. Hashimoto E, Taniai M, Tokushige K. Characteristics and diagnosis of NAFLD/NASH. J Gastroenterol Hepatol. 2013;28: 64–70. 10.1111/jgh.12271
    1. Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis—new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013;10: 627–636. 10.1038/nrgastro.2013.149
    1. Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med. 1997;126: 137–145.
    1. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385: 956–965. 10.1016/S0140-6736(14)61933-4
    1. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362: 1675–1685. 10.1056/NEJMoa0907929
    1. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58: 1941–1952. 10.1002/hep.26461
    1. Ding SY, Shen ZF, Chen YT, Sun SJ, Liu Q, Xie MZ. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. Acta Pharmacol Sin. 2005;26: 575–580.
    1. Han JY, Kim YJ, Kim L, Choi SJ, Park IS, Kim JM, et al. PPARgamma agonist and angiotensin II receptor antagonist ameliorate renal tubulointerstitial fibrosis. J Korean Med Sci. 2010;25: 35–41. 10.3346/jkms.2010.25.1.35
    1. Higashi K, Oda T, Kushiyama T, Hyodo T, Yamada M, Suzuki S, et al. Additive antifibrotic effects of pioglitazone and candesartan on experimental renal fibrosis in mice. Nephrology (Carlton). 2010;15: 327–335.
    1. Ratziu V, Harrison S, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an Agonist of the Peroxisome Proliferator-activated Receptor-ɑ and -δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology. 2016;150: 1147–1159. 10.1053/j.gastro.2016.01.038

Source: PubMed

3
Abonnere