High-fructose feeding suppresses cold-stimulated brown adipose tissue glucose uptake independently of changes in thermogenesis and the gut microbiome

Gabriel Richard, Denis P Blondin, Saad A Syed, Laura Rossi, Michelle E Fontes, Mélanie Fortin, Serge Phoenix, Frédérique Frisch, Stéphanie Dubreuil, Brigitte Guérin, Éric E Turcotte, Martin Lepage, Michael G Surette, Jonathan D Schertzer, Gregory R Steinberg, Katherine M Morrison, André C Carpentier, Gabriel Richard, Denis P Blondin, Saad A Syed, Laura Rossi, Michelle E Fontes, Mélanie Fortin, Serge Phoenix, Frédérique Frisch, Stéphanie Dubreuil, Brigitte Guérin, Éric E Turcotte, Martin Lepage, Michael G Surette, Jonathan D Schertzer, Gregory R Steinberg, Katherine M Morrison, André C Carpentier

Abstract

Diets rich in added sugars are associated with metabolic diseases, and studies have shown a link between these pathologies and changes in the microbiome. Given the reported associations in animal models between the microbiome and brown adipose tissue (BAT) function, and the alterations in the microbiome induced by high-glucose or high-fructose diets, we investigated the potential causal link between high-glucose or -fructose diets and BAT dysfunction in humans. Primary outcomes are changes in BAT cold-induced thermogenesis and the fecal microbiome (clinicaltrials.gov, NCT03188835). We show that BAT glucose uptake, but not thermogenesis, is impaired by a high-fructose but not high-glucose diet, in the absence of changes in the gastrointestinal microbiome. We conclude that decreased BAT glucose metabolism occurs earlier than other pathophysiological abnormalities during fructose overconsumption in humans. This is a potential confounding factor for studies relying on 18F-FDG to assess BAT thermogenesis.

Keywords: brown adipose tissue; fructose; glucose; magnetic resonance; metabolic dysfunction; microbiome; overfeeding; positron emission tomography; short-chain fatty acids; stable isotopes.

Conflict of interest statement

Declaration of interests A.C.C. received research funding by Eli Lilly (2019–2021) and NovoNordisk (2021–ongoing) and consultation fees by HLS Therapeutics, Janssen Inc., Novartis Pharmaceuticals Canada Inc., and Novo Nordisk Canada Inc. K.M.M. is an advisory board member for NovoNordisk.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Body composition at baseline and following the high-carbohydrate diets No significant change in whole-body or tissue-specific composition was noted with the different diets. (A) Changes in body mass and composition assessed (after the diet - before the diet) by dual-energy X-ray absorptiometry (n = 10). (B) Energy expenditure from exercise assessed by uniaxial accelerometer at baseline (n = 8), during high fructose consumption (n = 10), and high glucose consumption (n = 9). (C) Whole-body energy expenditure at rest assessed by indirect calorimetry (n = 10). (D) Fat content of tissues assessed by Dixon MRI (n = 10). All p values are >0.05. BAT, brown adipose tissue; FM, fat mass; PDFF, proton-density fat fraction; LM, lean mass; scWAT, subcutaneous white adipose tissue; VAT, visceral adipose tissue. Participant 13 was excluded from the analyses due to antibiotic use (potential effects on the microbiome) before the fructose and glucose diets and is shown with a square symbol shape.
Figure 2
Figure 2
Fecal microbiome analyses and fecal short-chain fatty acids for the different diets (A) Relative abundance taxonomic summaries divided by diet and ordered by participant for all participants included in statistical analyses (n = 9). Top 12 genera in the data were colored and are identified in the legend. All other genera are in “other.” (B) Participants’ fecal microbial α-diversity assessed by Shannon and Simpson indices at baseline (n = 10), following high fructose consumption (n = 9) and high glucose consumption (n = 9). Each dot represents the value of the diversity metric from each sample. The boxes show the median and interquartile range. A generalized mixed-effects model found no significant differences by α-diversity. (C) Participants’ fecal microbial β-diversity assessed by Aitchison distance and visualized using a Principal-Coordinate Analysis plot. Each dot represents a sample and samples are colored by diet (baseline [n = 10], high fructose [n = 9], and high glucose [n = 9]). A permutational multivariate ANOVA found no significant differences by β-diversity. Percent variation explained by each axis is noted in square brackets. (D) Fecal short-chain fatty acid composition for baseline (n = 10), high fructose (n = 10), and high glucose (n = 9). No significant difference was observed between diets. (E) Fecal short-chain fatty acid ratios. No significant difference was observed between diets. All p values are >0.05. Participant 13 was excluded from the analyses due to antibiotic use (potential effects on the microbiome) before the fructose and glucose diets and is shown with a square symbol shape.
Figure 3
Figure 3
Brown adipose tissue oxidative metabolism and intracellular triglyceride depletion (A) Mean time-activity curves (with standard deviation) showing the uptake and elimination of 11C-acetate or its metabolites at room temperature (baseline) and during cold exposure (18°C) for baseline, fructose, and glucose diets. (B) Proton-density fat fraction shift in brown adipose tissue with cold exposure (18°C - room temperature) for the different diets (n = 10). There is no difference in shifts between diets. (C) Blood flow index at baseline (n = 10; room temperature and cold), high fructose (cold: n = 9), and high glucose (cold: n = 10). A repeated measures mixed-effects model found a significant difference between room temperature and cold exposure (all conditions). (D) Oxidative metabolism at baseline (n = 10; room temperature and cold), high fructose (cold: n = 9), and high glucose (cold: n = 10). A repeated measures mixed-effects model found a significant difference between room temperature and cold exposure (all conditions). p values are shown only for significant differences (i.e., p K1, 11C-acetate uptake rate; k2, 11C-acetate oxidation rate; RT, room temperature; SUV, standardized uptake value. Participant 13 was excluded from the analyses due to antibiotic use (potential effects on the microbiome) before the fructose and glucose diets and is shown with a square symbol shape. 11C-acetate was not performed for participant 13 fructose due to problems with tracer synthesis.
Figure 4
Figure 4
Glucose metabolism of tissues with cold exposure (A) Mean brown adipose tissue time-activity curves (with standard deviation) showing 18F-fluorodeoxyglucose uptake during cold exposure (18°C) for baseline, fructose, and glucose diets. (B) Brown adipose tissue fractional glucose uptake at baseline (cold: n = 10), high fructose (cold: n = 9), and high glucose (cold: n = 10). A repeated measures mixed-effects model found a significant difference between baseline and fructose. (C) Brown adipose tissue metabolic rate of glucose at baseline (cold: n = 10), high fructose (cold: n = 9), and high glucose (cold: n = 10). A repeated measures mixed-effects model found a significant difference between baseline and fructose. (D) Metabolic rate of glucose for brown adipose tissue compared with skeletal muscles and subcutaneous fat at baseline (cold: n = 10), high fructose (cold: n = 9), and high glucose (cold: n = 10). Data are shown as mean and 95% confidence interval. There was no significant difference for tissues other than BAT (repeated measures mixed-effects model baseline versus fructose). p values are shown only for significant differences (i.e., p 18F-FDG, 18F-fluorodeoxyglycose; BAT, brown adipose tissue; Ki, fractional glucose uptake; MRGlu, metabolic rate of glucose; SCM, sternocleidomastoid muscle; scWAT, lower back subcutaneous white adipose tissue; SUV, standardized uptake value. Participant 13 was excluded from the analyses due to antibiotic use (potential effects on the microbiome) before the fructose and glucose diets and is shown with a square symbol shape. Participant 2 fructose 18F-fluorodeoxyglucose was excluded due to excessive participant motion.
Figure 5
Figure 5
Effect of cold exposure on the liver and whole-body lipid metabolism (A) Proton-density fat fraction of the liver, visceral adipose tissue, and white adipose tissue at room temperature and in the cold (18°C) for each diet (n = 10). A two-way repeated measures ANOVA found a significant difference between room temperature and cold in the liver with fructose. (B) Changes in the rate of appearance of glycerol with cold exposure assessed by stable isotope dilution (n = 9). (C) Changes in the rate of appearance of non-esterified fatty acids with cold exposure assessed by stable isotope dilution at baseline (n = 9), high fructose (n = 10), and high glucose (n = 10). (D) Circulating very-low-density lipoprotein-triglycerides at room temperature and during cold (n = 10). A two-way repeated measures ANOVA found a significant difference between the baseline and high-carbohydrate diets in the cold. p values are shown only for significant differences (i.e., p a, rate of appearance; RT, room temperature; scWAT, subcutaneous white adipose tissue; VAT, visceral adipose tissue; VLDL-TG, very-low-density lipoprotein-triglycerides. Participant 13 was excluded from the analyses due to antibiotic use (potential effects on the microbiome) before the fructose and glucose diets and is shown with a square symbol shape.

References

    1. Zavaroni I., Chen Y.D., Reaven G.M. Studies of the mechanism of fructose-induced hypertriglyceridemia in the rat. Metabolism. 1982;31:1077–1083.
    1. Nikkilä E.A., Ojala K. Induction of hyperglyceridemia by fructose in the rat. Life Sci. 1965;4:937–943.
    1. Martinez F.J., Rizza R.A., Romero J.C. High-fructose feeding elicits insulin resistance, hyperinsulinism, and hypertension in normal mongrel dogs. Hypertension. 1994;23:456–463.
    1. Hwang I.S., Ho H., Hoffman B.B., Reaven G.M. Fructose-induced insulin resistance and hypertension in rats. Hypertension. 1987;10:512–516.
    1. Stanhope K.L., Schwarz J.M., Keim N.L., Griffen S.C., Bremer A.A., Graham J.L., Hatcher B., Cox C.L., Dyachenko A., Zhang W., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 2009;119:1322–1334.
    1. Stanhope K.L., Bremer A.A., Medici V., Nakajima K., Ito Y., Nakano T., Chen G., Fong T.H., Lee V., Menorca R.I., et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J. Clin. Endocrinol. Metab. 2011;96:1596–1605.
    1. Stanhope K.L., Medici V., Bremer A.A., Lee V., Lam H.D., Nunez M.V., Chen G.X., Keim N.L., Havel P.J. A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 2015;101:1144–1154.
    1. Hieronimus B., Medici V., Bremer A.A., Lee V., Nunez M.V., Sigala D.M., Keim N.L., Havel P.J., Stanhope K.L. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults. Metabolism. 2020;112:154356.
    1. Schwarz J.M., Noworolski S.M., Wen M.J., Dyachenko A., Prior J.L., Weinberg M.E., Herraiz L.A., Tai V.W., Bergeron N., Bersot T.P., et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 2015;100:2434–2442.
    1. Lustig R.H., Mulligan K., Noworolski S.M., Tai V.W., Wen M.J., Erkin-Cakmak A., Gugliucci A., Schwarz J.M. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity. 2016;24:453–460.
    1. Schwarz J.M., Noworolski S.M., Erkin-Cakmak A., Korn N.J., Wen M.J., Tai V.W., Jones G.M., Palii S.P., Velasco-Alin M., Pan K., et al. Effects of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity. Gastroenterology. 2017;153:743–752.
    1. Becher T., Palanisamy S., Kramer D.J., Eljalby M., Marx S.J., Wibmer A.G., Butler S.D., Jiang C.S., Vaughan R., Schöder H., et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 2021;27:58–65.
    1. Cypess A.M., Lehman S., Williams G., Tal I., Rodman D., Goldfine A.B., Kuo F.C., Palmer E.L., Tseng Y.H., Doria A., et al. Identification and importance of Brown adipose tissue in adult humans. N. Engl. J. Med. 2009;360:1509–1517.
    1. Ouellet V., Routhier-Labadie A., Bellemare W., Lakhal-Chaieb L., Turcotte E., Carpentier A.C., Richard D. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J. Clin. Endocrinol. Metab. 2011;96:192–199.
    1. Wibmer A.G., Becher T., Eljalby M., Crane A., Andrieu P.C., Jiang C.S., Vaughan R., Schöder H., Cohen P. Brown adipose tissue is associated with healthier body fat distribution and metabolic benefits independent of regional adiposity. Cell Rep. Med. 2021;2:100332.
    1. Blondin D.P., Labbé S.M., Noll C., Kunach M., Phoenix S., Guérin B., Turcotte É.E., Haman F., Richard D., Carpentier A.C. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64:2388–2397.
    1. Orava J., Nuutila P., Noponen T., Parkkola R., Viljanen T., Enerbäck S., Rissanen A., Pietiläinen K.H., Virtanen K.A. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity. 2013;21:2279–2287.
    1. Saari T.J., Raiko J., U-Din M., Niemi T., Taittonen M., Laine J., Savisto N., Haaparanta-Solin M., Nuutila P., Virtanen K.A. Basal and cold-induced fatty acid uptake of human brown adipose tissue is impaired in obesity. Sci. Rep. 2020;10:14373–14411.
    1. Baskin A.S., Linderman J.D., Brychta R.J., McGehee S., Anflick-Chames E., Cero C., Johnson J.W., O'Mara A.E., Fletcher L.A., Leitner B.P., et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by A b3-adrenergic receptor agonist. Diabetes. 2018;67:2113–2125.
    1. Blondin D.P., Labbé S.M., Tingelstad H.C., Noll C., Kunach M., Phoenix S., Guérin B., Turcotte E.E., Carpentier A.C., Richard D., Haman F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 2014;99:438–446.
    1. Blondin D.P., Nielsen S., Kuipers E.N., Severinsen M.C., Jensen V.H., Miard S., Jespersen N.Z., Kooijman S., Boon M.R., Fortin M., et al. Human Brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metabol. 2020;32:287–300.e7.
    1. Cypess A.M., Weiner L.S., Roberts-Toler C., Franquet Elía E., Kessler S.H., Kahn P.A., English J., Chatman K., Trauger S.A., Doria A., Kolodny G.M. Activation of human brown adipose tissue by β3-adrenergic receptor agonist. Cell Metabol. 2015;21:33–38.
    1. Hanssen M.J.W., Van Der Lans A.A.J.J., Brans B., Hoeks J., Jardon K.M.C., Schaart G., Mottaghy F.M., Schrauwen P., Van Marken Lichtenbelt W.D. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65:1179–1189.
    1. Hanssen M.J.W., Hoeks J., Brans B., van der Lans A.A.J.J., Schaart G., van den Driessche J.J., Jörgensen J.A., Boekschoten M.V., Hesselink M.K.C., Havekes B., et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 2015;21:863–865.
    1. O’Mara A.E., Johnson J.W., Linderman J.D., Brychta R.J., McGehee S., Fletcher L.A., Fink Y.A., Kapuria D., Cassimatis T.M., Kelsey N., et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 2020;130:2209–2219.
    1. Zhao S., Jang C., Liu J., Uehara K., Gilbert M., Izzo L., Zeng X., Trefely S., Fernandez S., Carrer A., et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 2020;579:586–591.
    1. Sun W., Dong H., Wolfrum C. Local acetate inhibits brown adipose tissue function. Proc. Natl. Acad. Sci. USA. 2021;118 e2116125118.
    1. Li J.M., Yu R., Zhang L.P., Wen S.Y., Wang S.J., Zhang X.Y., Xu Q., Kong L.D. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome. 2019;7:98.
    1. Blondin D.P., Frisch F., Phoenix S., Guérin B., Turcotte É.E., Haman F., Richard D., Carpentier A.C. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metabol. 2017;25:438–447.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563.
    1. Ouellet V., Labbé S.M., Blondin D.P., Phoenix S., Guérin B., Haman F., Turcotte E.E., Richard D., Carpentier A.C. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 2012;122:545–552.
    1. Richard M.A., Blondin D.P., Noll C., Lebel R., Lepage M., Carpentier A.C. Determination of a pharmacokinetic model for [11C]-acetate in brown adipose tissue. EJNMMI Res. 2019;9:31.
    1. Richard G., Noll C., Archambault M., Lebel R., Tremblay L., Ait-Mohand S., Guérin B., Blondin D.P., Carpentier A.C., Lepage M. Contribution of perfusion to the 11C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68Ga-DOTA PET in a rat model. Magn. Reson. Med. 2021;85:1625–1642.
    1. Labbé S.M., Croteau E., Grenier-Larouche T., Frisch F., Ouellet R., Langlois R., Guérin B., Turcotte E.E., Carpentier A.C. Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes. Diabetes. 2011;60:408–415.
    1. Oreskovich S.M., Ong F.J., Ahmed B.A., Konyer N.B., Blondin D.P., Gunn E., Singh N.P., Noseworthy M.D., Haman F., Carpentier A.C., et al. Magnetic resonance imaging reveals human brown adipose tissue is rapidly activated in response to cold. J. Endocr. Soc. 2019;3:2374–2384.
    1. Coolbaugh C.L., Damon B.M., Bush E.C., Welch E.B., Towse T.F. Cold exposure induces dynamic , heterogeneous alterations in human brown adipose tissue lipid content. Sci. Rep. 2019;9:13600–13613. doi: 10.1038/s41598-019-49936-x.
    1. Abreu-Vieira G., Sardjoe Mishre A.S.D., Burakiewicz J., Janssen L.G.M., Nahon K.J., van der Eijk J.A., Riem T.T., Boon M.R., Dzyubachyk O., Webb A.G., et al. Human Brown adipose tissue estimated with magnetic resonance imaging undergoes changes in composition after cold exposure: an in vivo MRI study in healthy volunteers. Front. Endocrinol. 2020;10:1–15.
    1. Ahmed B.A., Ong F.J., Barra N.G., Blondin D.P., Gunn E., Oreskovich S.M., Szamosi J.C., Syed S.A., Hutchings E.K., Konyer N.B., et al. Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota. Cell Rep. Med. 2021;2:100397.
    1. Baba S., Jacene H.A., Engles J.M., Honda H., Wahl R.L. CT hounsfield units of Brown adipose tissue increase with activation: preclinical and clinical studies. J. Nucl. Med. 2010;51:246–250.
    1. Gifford A., Towse T.F., Walker R.C., Avison M.J., Welch E.B. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. Am. J. Physiol. Endocrinol. Metab. 2016;311:E95–E104.
    1. Lundström E., Strand R., Johansson L., Bergsten P., Ahlström H., Kullberg J. Magnetic resonance imaging cooling-reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue. PLoS One. 2015;10 e0126705–13.
    1. Hamilton G., Smith D.L., Bydder M., Nayak K.S., Hu H.H. MR properties of brown and white adipose tissues. J. Magn. Reson. Imag. 2011;34:468–473.
    1. Patlak C.S., Blasberg R.G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cerebr. Blood Flow Metabol. 1983;5:584–590.
    1. Virtanen K.A., Peltoniemi P., Marjamäki P., Asola M., Strindberg L., Parkkola R., Huupponen R., Knuuti J., Lönnroth P., Nuutila P. Human adipose tissue glucose uptake determined using [18F]-fluoro-deoxy-glucose ([18F]FDG) and PET in combination with microdialysis. Diabetologia. 2001;44:2171–2179.
    1. Peltoniemi P., Lönnroth P., Laine H., Oikonen V., Tolvanen T., Grönroos T., Strindberg L., Knuuti J., Nuutila P. Lumped constant for [18F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am. J. Physiol. Endocrinol. Metabol. 2000;279:1122–1130.
    1. Adiels M., Olofsson S.O., Taskinen M.R., Borén J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008;28:1225–1236.
    1. Serlie M., Serlie M.J. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients. 2017;9:981–1020.
    1. Alves-Bezerra M., Cohen D.E. Triglyceride metabolism in the liver. Compr. Physiol. 2018;8:1–22.
    1. Blondin D.P., Tingelstad H.C., Noll C., Frisch F., Phoenix S., Guérin B., Turcotte É.E., Richard D., Haman F., Carpentier A.C. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat. Commun. 2017;8:14146.
    1. Hankir M.K., Kranz M., Keipert S., Weiner J., Andreasen S.G., Kern M., Patt M., Klöting N., Heiker J.T., Brust P., et al. Dissociation between brown adipose tissue 18F-FDG uptake and thermogenesis in uncoupling protein 1-deficient mice. J. Nucl. Med. 2017;58:1100–1103.
    1. Olsen J.M., Csikasz R.I., Dehvari N., Lu L., Sandström A., Öberg A.I., Nedergaard J., Stone-Elander S., Bengtsson T. β3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol. Metabol. 2017;6:611–619.
    1. Richard M.A., Pallubinsky H., Blondin D.P. Functional characterization of human brown adipose tissue metabolism. Biochem. J. 2020;477:1261–1286.
    1. Low W.S., Cornfield T., Charlton C.A., Tomlinson J.W., Hodson L. Sex differences in hepatic De Novo lipogenesis with acute fructose feeding. Nutrients. 2018;10
    1. Taskinen M.R., Söderlund S., Bogl L.H., Hakkarainen A., Matikainen N., Pietiläinen K.H., Räsänen S., Lundbom N., Björnson E., Eliasson B., et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J. Intern. Med. 2017;282:187–201.
    1. Worthmann A., John C., Rühlemann M.C., Baguhl M., Heinsen F.A., Schaltenberg N., Heine M., Schlein C., Evangelakos I., Mineo C., et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 2017;23:839–849.
    1. Scheja L., Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J. Hepatol. 2016;64:1176–1186.
    1. Olsen J.M., Sato M., Dallner O.S., Sandström A.L., Pisani D.F., Chambard J.C., Amri E.Z., Hutchinson D.S., Bengtsson T. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J. Cell Biol. 2014;207:365–374.
    1. Herman M.A., Birnbaum M.J. Molecular aspects of fructose metabolism and metabolic disease. Cell Metabol. 2021;33:2329–2354.
    1. Berbée J.F.P., Boon M.R., Khedoe P.P.S.J., Bartelt A., Schlein C., Worthmann A., Kooijman S., Hoeke G., Mol I.M., John C., et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 2015;6:6356.
    1. Khedoe P.P.S.J., Hoeke G., Kooijman S., Dijk W., Buijs J.T., Kersten S., Havekes L.M., Hiemstra P.S., Berbée J.F.P., Boon M.R., Rensen P.C.N. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J. Lipid Res. 2015;56:51–59.
    1. Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., Kaul M.G., Tromsdorf U.I., Weller H., Waurisch C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011;17:200–205.
    1. U Din M., Saari T., Raiko J., Kudomi N., Maurer S.F., Lahesmaa M., Fromme T., Amri E.Z., Klingenspor M., Solin O., et al. Postprandial oxidative metabolism of human Brown fat indicates thermogenesis. Cell Metabol. 2018;28:207–216.e3.
    1. U Din M., Raiko J., Saari T., Kudomi N., Tolvanen T., Oikonen V., Teuho J., Sipilä H.T., Savisto N., Parkkola R., et al. Human brown adipose tissue [15O]O2 PET imaging in the presence and absence of cold stimulus. Eur. J. Nucl. Med. Mol. Imag. 2016;43:1878–1886.
    1. Powell E.S., Smith-Taillie L.P., Popkin B.M. Added sugars intake across the distribution of US children and adult consumers: 1977-2012. J. Acad. Nutr. Diet. 2016;116:1543–1550.e1.
    1. Vos M.B., Kimmons J.E., Gillespie C., Welsh J., Blanck H.M. Dietary fructose consumption among US children and adults: the third national health and nutrition examination survey. Medscape J. Med. 2008;10:160.
    1. Haman F., Péronnet F., Kenny G.P., Massicotte D., Lavoie C., Scott C., Weber J.M. Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids. J. Appl. Physiol. 2002;93:77–84.
    1. Wolfe R.R., Chinkes D.L. Wiley-Liss; 2005. Isotope Tracers in Metabolic Research : Principles and Practice of Kinetic Analysis.
    1. Pouteau E., Meirim I., Métairon S., Fay L.B. Acetate, propionate and butyrate in plasma: determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization. J. Mass Spectrom. 2001;36:798–805.
    1. Tsukahara T., Matsukawa N., Tomonaga S., Inoue R., Ushida K., Ochiai K. High-sensitivity detection of short-chain fatty acids in porcine ileal, cecal, portal and abdominal blood by gas chromatography-mass spectrometry. Anim. Sci. J. 2014;85:494–498.
    1. Stearns J.C., Davidson C.J., Mckeon S., Whelan F.J., Fontes M.E., Schryvers A.B., Bowdish D.M.E., Kellner J.D., Surette M.G. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 2015;9:1268.
    1. Szamosi J.C., Forbes J.D., Copeland J.K., Knox N.C., Shekarriz S., Rossi L., Graham M., Bonner C., Guttman D.S., Van Domselaar G., et al. Assessment of inter-laboratory variation in the characterization and analysis of the mucosal microbiota in Crohn’s disease and ulcerative colitis. Front. Microbiol. 2020;11:1–13.
    1. Bartram A.K., Lynch M.D.J., Stearns J.C., Moreno-Hagelsieb G., Neufeld J.D. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 2011;77:3846–3852.
    1. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583.
    1. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10.
    1. Hardy J.D., Du Bois E.F., Soderstrom G.F. The technic of measuring radiation and convection. J. Nutr. 1938;15:461–475. doi: 10.1093/jn/15.5.461.
    1. Haman F., Legault S.R., Rakobowchuk M., Ducharme M.B., Weber J.M. Effects of carbohydrate availability on sustained shivering II. Relating muscle recruitment to fuel selection. J. Appl. Physiol. 2004;96:41–49.
    1. Haman F., Péronnet F., Kenny G.P., Massicotte D., Lavoie C., Weber J.M. Partitioning oxidative fuels during cold exposure in humans: muscle glycogen becomes dominant as shivering intensifies. J. Physiol. 2005;566:247–256.
    1. Blondin D.P., Labbé S.M., Phoenix S., Guérin B., Turcotte É.E., Richard D., Carpentier A.C., Haman F. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J. Physiol. 2015;593:701–714.
    1. Bell D.G., Tikuisis P., Jacobs I. Relative intensity of muscular contraction during shivering. J. Appl. Physiol. 1992;72:2336–2342. doi: 10.1152/jappl.1992.72.6.2336.
    1. Haman F., Legault S.R., Weber J.M. Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation. J. Physiol. 2004;556:305–313.
    1. Vella A., Rizza R.A. Application of isotopic techniques using constant specific activity or enrichment to the study of carbohydrate metabolism. Diabetes. 2009;58:2168–2174.
    1. Buck A., Wolpers H.G., Hutchins G.D., Savas V., Mangner T.J., Nguyen N., Schwaiger M. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J. Nucl. Med. 1991;32:1950–1957.
    1. Vanhamme L., van den Boogaart A., Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. 1997;129:35–43.
    1. Peterson P., Trinh L., Månsson S. Quantitative 1H MRI and MRS of fatty acid composition. Magn. Reson. Med. 2021;85:49–67.
    1. Patterson B.W., Zhao G., Elias N., Hachey D.L., Klein S. Validation of a new procedure to determine plasma fatty acid concentration and isotopic enrichment. J. Lipid Res. 1999;40:2118–2124.

Source: PubMed

3
Subskrybuj