Beta-Band Functional Connectivity is Reorganized in Mild Cognitive Impairment after Combined Computerized Physical and Cognitive Training

Manousos A Klados, Charis Styliadis, Christos A Frantzidis, Evangelos Paraskevopoulos, Panagiotis D Bamidis, Manousos A Klados, Charis Styliadis, Christos A Frantzidis, Evangelos Paraskevopoulos, Panagiotis D Bamidis

Abstract

Physical and cognitive idleness constitute significant risk factors for the clinical manifestation of age-related neurodegenerative diseases. In contrast, a physically and cognitively active lifestyle may restructure age-declined neuronal networks enhancing neuroplasticity. The present study, investigated the changes of brain's functional network in a group of elderly individuals at risk for dementia that were induced by a combined cognitive and physical intervention scheme. Fifty seniors meeting Petersen's criteria of Mild Cognitive Impairment were equally divided into an experimental (LLM), and an active control (AC) group. Resting state electroencephalogram (EEG) was measured before and after the intervention. Functional networks were estimated by computing the magnitude square coherence between the time series of all available cortical sources as computed by standardized low resolution brain electromagnetic tomography (sLORETA). A statistical model was used to form groups' characteristic weighted graphs. The introduced modulation was assessed by networks' density and nodes' strength. Results focused on the beta band (12-30 Hz) in which the difference of the two networks' density is maximum, indicating that the structure of the LLM cortical network changes significantly due to the intervention, in contrast to the network of AC. The node strength of LLM participants in the beta band presents a higher number of bilateral connections in the occipital, parietal, temporal and prefrontal regions after the intervention. Our results show that the combined training scheme reorganizes the beta-band functional connectivity of MCI patients. ClinicalTrials.gov Identifier: NCT02313935 https://ichgcp.net/clinical-trials-registry/NCT02313935.

Keywords: aging; brain plasticity; cognitive training; electroencephalography; graph theory; mild cognitive impairment; physical exercise; resting states.

Figures

Figure 1
Figure 1
This figure is a graphical illustration for the extraction of groups' characteristic networks. For each group and for each frequency band, N (N = Number of subjects) functional connectivity matrices were obtained for PRE and POST conditions. The values from each (i, j) cell were obtained forming a variable with N values for PRE condition and a variable also with N values for POST condition. These two variables where compared using a t-test and if their difference is statistically significant (p-value < 0.05), after the FDR correction, the (i, j) cell of the characteristic network is equal to the (1–p) value, while in the opposite case equals to zero.
Figure 2
Figure 2
Cortex plots illustrate the characteristic networks for both groups and for each frequency band. Each edge represents the inversed p-value, extracted by the t-test comparison between PRE and POST conditions and corrected using FDR. The LLM group shows stronger effect in the beta-band's network, while AC affects only delta and theta networks. This result is produced by one node in the left fronto-temporal area, which seems to be connected mostly with long distance nodes. Long distance couplings, especially in low frequencies, are probably due to low frequency signaling and not due to synchronous activity, so this effect cannot be interpreted as a solid one.
Figure 3
Figure 3
The line plot illustrates the density of the characteristic networks in all frequency bands. The highest difference between LLM and AC groups is observed for beta brainwaves. The axial and sagittal views of the LLM's characteristic network reveal its topology. LLM alters beta rhythm, while other bands remain almost intact.
Figure 4
Figure 4
Central cortex depicts the nodes' strength with green circles, where the size of each circle is in line with each node's strength. Only nodes with z score higher than 3 are presented. The small cortices indicate the connectivity vector of each node, representing their interconnectivity to the cortex. The robustness of each node's connectivity ranges from minimum (blue areas) to maximum (red areas).

References

    1. Akalin Acar Z., Makeig S. (2013). Effects of forward model errors on EEG source localization. Brain Topogr. 26, 378–396. 10.1007/s10548-012-0274-6
    1. Anderson-Hanley C., Arciero P. J., Brickman A. M., Nimon J. P., Okuma N., Westen S. C., et al. . (2012). Exergaming and older adult cognition: a cluster randomized clinical trial. Am. J. Prev. Med. 42, 109–119. 10.1016/j.amepre.2011.10.016
    1. Bamidis P. D., Fissler P., Papageorgiou S. G., Zilidou V., Konstantinidis E. I., Billis A. S., et al. . (2015). Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 7:152. 10.3389/fnagi.2015.00152
    1. Bamidis P. D., Vivas A. B., Styliadis C., Frantzidis C., Klados M., Schlee W., et al. . (2014). A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 44, 206–220. 10.1016/j.neubiorev.2014.03.019
    1. Bell A. J., Sejnowski T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159. 10.1162/neco.1995.7.6.1129
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B (Methodol.). 57, 289–300.
    1. Billis A. S., Konstantinidis E. I., Mouzakidis C., Tsolaki M. N., Pappas C., Bamidis P. D. (2010). A game-like interface for training seniors' dynamic balance and coordination, in XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010 SE - 174, eds Bamidis P. D., Pallikarakis N. (Heidelberg: IFMBE Proceedings Springer; ), 691–694.
    1. Bin H., Yunhua W., Dongsheng W. (1999). Estimating cortical potentials from scalp eegs in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Tran. Biomed. Eng. 46, 1264–1268. 10.1109/10.790505
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–41. 10.1002/mrm.1910340409
    1. Bokde A. L., Ewers M., Hampel H. (2009). Assessing neuronal networks: understanding Alzheimer's disease. Prog. Neurobiol. 89, 125–133. 10.1016/j.pneurobio.2009.06.004
    1. Bressler S. L., Menon V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290. 10.1016/j.tics.2010.04.004
    1. Buckner R. L. (2004). Memory and executive function in aging and ad: multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195–208. 10.1016/j.neuron.2004.09.006
    1. Busse A. L., Gil G., Santarém J. S., Filho W. J. (2009). Physical activity and cognition in the elderly: a review. Dementia Neuropsychol. 3, 204–208.
    1. Clark C. M., Davatzikos C., Borthakur A., Newberg A., Leight S., Lee V. M., et al. . (2008). Biomarkers for early detection of Alzheimer pathology. Neurosignals 16, 11–18. 10.1159/000109754
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130. 10.1111/1467-9280.t01-1-01430
    1. Corbetta M., Shulman G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. 10.1038/nrn755
    1. Damoiseaux J. S., Beckmann C. F., Arigita E. J., Barkhof F., Scheltens P., Stam C. J., et al. . (2008). Reduced resting-state brain activity in the ‘default network’ in normal aging. Cereb. Cortex 18, 1856–1864. 10.1093/cercor/bhm207
    1. Damoiseaux J. S., Prater K. E., Miller B. L., Greicius M. D. (2012). Functional connectivity tracks clinical deterioration in Alzheimer's disease. Neurobiol. Aging 33, 828.e19–828.e30. 10.1016/j.neurobiolaging.2011.06.024
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. 10.1016/j.jneumeth.2003.10.009
    1. De Vico Fallani F., Maglione A., Babiloni F., Mattia D., Astolfi L., Vecchiato G., et al. . (2010). Cortical network analysis in patients affected by schizophrenia. Brain Topogr. 23, 214–220. 10.1007/s10548-010-0133-2
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312. 10.1038/427311a
    1. Engel A. K., Fries P. (2010). Beta-band oscillations–signalling the status quo? Opin. Neurobiol. 20, 156–165. 10.1016/j.conb.2010.02.015
    1. Erickson K. I., Colcombe S. J., Wadhwa R., Bherer L., Peterson M. S., Scalf P. E., et al. . (2007). Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging 28, 272–283. 10.1016/j.neurobiolaging.2005.12.012
    1. Fabel K., Kempermann G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromol. Med. 10, 59–66. 10.1007/s12017-008-8031-4
    1. Fabel K., Wolf S. A., Ehninger D., Babu H., Leal-Galicia P., Kempermann G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 3:50. 10.3389/neuro.22.002.2009
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678. 10.1073/pnas.0504136102
    1. Frantzidis C. A., Ladas A. K., Vivas A. B., Tsolaki M., Bamidis P. D. (2014a). Cognitive and physical training for the elderly: evaluating outcome efficacy by means of neurophysiological synchronization. Int. J. Psychophysiol. 93, 1–11. 10.1016/j.ijpsycho.2014.01.007
    1. Frantzidis C. A., Vivas A. B., Tsolaki A., Klados M. A., Bamidis P. D. (2014b). Functional disorganization of small-world brain networks in mild Alzheimer's disease and amnestic mild cognitive impairment: an eeg study using relative wavelet entropy (rwe). Front. Aging Neurosci. 6:224. 10.3389/fnagi.2014.00224
    1. Fratiglioni L., Paillard-Borg S., Winblad B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343–353. 10.1016/S1474-4422(04)00767-7
    1. Garcés P., Ángel Pineda-Pardo J., Canuet L., Aurtenetxe S., López M. E., Marcos A., et al. . (2014). The default mode network is functionally and structurally disrupted in amnestic mild cognitive impairment — a bimodal meg–dti study. Neuroimage Clin. 6, 214–221. 10.1016/j.nicl.2014.09.004
    1. Geerligs L., Renken R. J., Saliasi E., Maurits N. M., Lorist M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex 25, 1987–1999. 10.1093/cercor/bhu012
    1. Gómez C., Stam C. J., Hornero R., Fernández A., Maestú F. (2009). Disturbed beta band functional connectivity in patients with mild cognitive impairment: an meg study. IEEE Trans. Biomed. Eng. 56, 1683–1690. 10.1109/TBME.2009.2018454
    1. González-Palau F., Franco M., Bamidis P., Losada R., Parra E., Papageorgiou S. G., et al. . (2014). The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample. Aging Ment. Health 18, 838–846. 10.1080/13607863.2014.899972
    1. Greicius M. D., Srivastava G., Reiss A. L., Menon V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional, MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642. 10.1073/pnas.0308627101
    1. Gutchess A. (2014). Plasticity of the aging brain: new directions in cognitive neuroscience. Science 346, 579–582. 10.1126/science.1254604
    1. Hampstead B. M., Stringer A. Y., Stilla R. F., Deshpande G., Hu X., Moore A. B., et al. . (2011). Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: a pilot study. Neurorehabil. Neural Repair 25, 210–222. 10.1177/1545968310382424
    1. Hughes C. P., Berg L., Danziger W. L., Coben L. A., Martin R. L. (1982). A new clinical scale for the staging of dementia. Br. J. Psychiatry 140, 566–572.
    1. Jenkinson M., Beckmann C. F., Behrens T. E., Woolrich M. W., Smith S. M. (2012). FSL. Neuroimage 62, 782–790. 10.1016/j.neuroimage.2011.09.015
    1. Klados M. A., Kanatsouli K., Antoniou I., Babiloni F., Tsirka V., Bamidis P. D., et al. . (2013). A graph theoretical approach to study the organization of the cortical networks during different mathematical tasks. PLoS ONE 8:e71800. 10.1371/journal.pone.0071800
    1. Klados M. A., Papadelis C., Bamidis P. D. (2009). REG-ICA: a new hybrid method for eog artifact rejection, in IEEE 2009 9th International Conference on Information Technology and Applications in Biomedicine (Larnaca: ), 1–4.
    1. Klados M. A., Papadelis C., Braun C., Bamidis P. D. (2011). REG-ICA: a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts. Biomed. Signal Process. Control 6, 291–300. 10.1016/j.bspc.2011.02.001
    1. Koenig T., Prichep L., Dierks T., Hubl D., Wahlund L. O., John E. R., et al. . (2005). Decreased EEG Synchronization in Alzheimer's Disease and mild cognitive impairment. Neurobiol. Aging 26, 165–171. 10.1016/j.neurobiolaging.2004.03.008
    1. Konstantinidis E. I., Billis A. S., Mouzakidis C. A., Zilidou V. I., Antoniou P. E., Bamidis P. D. (2016). Design, implementation and wide pilot deployment of fitforall: an easy to use exergaming platform improving physical fitness and life quality of senior citizens. IEEE J. Biomed. Health Inform. 20, 189–200. 10.1109/JBHI.2014.2378814
    1. Krüger H. S., Brockmann M. D., Salamon J., Ittrich H., Hanganu-Opatz I. L. (2012). Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol. Learn. Mem. 97, 470–481. 10.1016/j.nlm.2012.04.001
    1. Larrieu S., Letenneur L., Orgogozo J. M., Fabrigoule C., Amieva H., Le Carret N., et al. . (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology 59, 1594–99. 10.1212/01.WNL.0000034176.07159.F8
    1. Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., et al. . (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. U.S.A. 100, 11053–11058. 10.1073/pnas.1831638100
    1. Lithari C., Klados M. A., Papadelis C., Pappas C., Albani M., Bamidis P. D. (2011). How does the metric choice affect brain functional connectivity networks? Biomed. Signal Process. Control 7, 228–236. 10.1016/j.bspc.2011.05.004
    1. Lithari C., Klados M. A., Pappas C., Albani M., Kapoukranidou D., Kovatsi L., et al. . (2012). Alcohol affects the brain's resting-state network in social drinkers. PLoS ONE 7:e48641. 10.1371/journal.pone.0048641
    1. Maestú F., Campo P., Del Río D., Moratti S., Gil-Gregorio P., Fernández A., et al. . (2008). Increased biomagnetic activity in the ventral pathway in mild cognitive impairment. Clin. Neurophysiol. 119, 1320–1327. 10.1016/j.clinph.2008.01.105
    1. Maestú F., Yubero R., Moratti S., Campo P., Gil-Gregorio P., Paul N., et al. . (2011). Brain activity patterns in stable and progressive mild cognitive impairment during working memory as evidenced by magnetoencephalography. J. Clin. Neurophysiol. 28, 202–209. 10.1097/WNP.0b013e3182121743
    1. Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S., et al. . (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97, 4398–4403. 10.1073/pnas.070039597
    1. Mahncke H. W., Bronstone A., Merzenich M. M. (2006a). Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog. Brain Res. 157, 81–109. 10.1016/S0079-6123(06)57006-2
    1. Mahncke H. W., Connor B. B., Appelman J., Ahsanuddin O. N., Hardy J. L., Wood R. A., et al. . (2006b). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103, 12523–12528. 10.1073/pnas.0605194103
    1. Mantini D., Perrucci M. G., Del Gratta C., Romani G. L., Corbetta M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. U.S.A. 104, 13170–13175. 10.1073/pnas.0700668104
    1. Mazoyer B., Zago L., Mellet E., Bricogne S., Etard O., Houdé O., et al. . (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull. 54, 287–98. 10.1016/S0361-9230(00)00437-8
    1. Mendez M. F., Mendez M. A., Martin R., Smyth K. A., Whitehouse P. J. (1990). Complex visual disturbances in Alzheimer's disease. Neurology 40 (3 Pt. 1), 439–443. 10.1212/WNL.40.3_Part_1.439
    1. Miron-Shatz T., Hansen M. M., Grajales F. J., 3rd, Martin-Sanchez F., Bamidis P. D. (2013). Social media for the promotion of holistic self-participatory care: an evidence based approach. Contribution of the imia social media working group. Yearb. Med. Inform. 8, 162–168.
    1. Münte T. F., Altenmüller E., Jäncke L. (2002). The musician's brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 473–478. 10.1038/nrn843
    1. Nakagawa T. T., Jirsa V. K., Spiegler A., McIntosh A. R., Deco G. (2013). Bottom up modeling of the connectome: linking structure and function in the resting brain and their changes in aging. Neuroimage 80, 318–329. 10.1016/j.neuroimage.2013.04.055
    1. Oswald W. D., Gunzelmann T., Rupprecht R., Hagen B. (2006). Differential effects of single versus combined cognitive and physical training with older adults: the sima study in a 5-year perspective. Eur. J. Ageing 3, 179–192. 10.1007/s10433-006-0035-z
    1. Pantel J., Kratz B., Essig M., Schröder J. (2003). Parahippocampal volume deficits in subjects with aging-associated cognitive decline. Am. J. Psychiatry 160, 379–382. 10.1176/appi.ajp.160.2.379
    1. Paraskevopoulos E., Kuchenbuch A., Herholz S. C., Pantev C. (2012). Evidence for training-induced plasticity in multisensory brain structures: an meg study. edited by ramesh balasubramaniam. PLoS ONE 7:e36534. 10.1371/journal.pone.0036534
    1. Paraskevopoulos E., Kuchenbuch A., Herholz S. C., Pantev C. (2014). Multisensory integration during short-term music reading training enhances both uni- and multisensory cortical processing. J. Cogn. Neurosci. 26, 2224–2238. 10.1162/jocn_a_00620
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194. 10.1111/j.1365-2796.2004.01388.x
    1. Petersen R. C., Doody R., Kurz A., Mohs R. C., Morris J. C., Rabins P. V., et al. . (2001). Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992. 10.1001/archneur.58.12.1985
    1. Petersen R. C., Roberts R. O., Knopman D. S., Boeve B. F., Geda Y. E., Ivnik R. J., et al. . (2009). Mild cognitive impairment: ten years later. Arch. Neurol. 66, 1447–1455. 10.1001/archneurol.2009.266
    1. Petersen R. C., Smith G. E., Ivnik R. J., Tangalos E. G., Schaid D. J., Thibodeau S. N., et al. . (1995). Apolipoprotein e status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. JAMA 273, 1274–1278. 10.1001/jama.273.16.1274
    1. Petrella J. R., Sheldon F. C., Prince S. E., Calhoun V. D., Doraiswamy P. M. (2011). Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 76, 511–517. 10.1212/WNL.0b013e31820af94e
    1. Poil S. S., de Haan W., van der Flier W. M., Mansvelder H. D., Scheltens P., Linkenkaer-Hansen K. (2013). Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage. Front. Aging Neurosci. 5:58. 10.3389/fnagi.2013.00058
    1. Prvulovic D., Hubl D., Sack A. T., Melillo L., Maurer K., Frölich L., et al. . (2002). Functional Imaging of Visuospatial Processing in Alzheimer's Disease. Neuroimage 17, 1403–1414. 10.1006/nimg.2002.1271
    1. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682. 10.1073/pnas.98.2.676
    1. Raz N., Lindenberger U., Rodrigue K. M., Kennedy K. M., Head D., Williamson A., et al. . (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689. 10.1093/cercor/bhi044
    1. Rombouts S. A., Barkhof F., Goekoop R., Stam C. J., Scheltens P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum. Brain Mapp. 26, 231–239. 10.1002/hbm.20160
    1. Russ M. O., Mack W., Grama C. R., Lanfermann H., Knopf M. (2003). Enactment effect in memory: evidence concerning the function of the supramarginal gyrus. Exp. Brain Res. 149, 497–504. 10.1007/s00221-003-1398-4
    1. Salat D. H., Buckner R. L., Snyder A. Z., Greve D. N., Desikan R. S., Busa E., et al. . (2004). Thinning of the cerebral cortex in aging. Cereb. Cortex 14, 721–730.
    1. Schlögl A., Keinrath C., Zimmermann D., Scherer R., Leeb R., Pfurtscheller G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clin. Neurophysiol. 118, 98–104. 10.1016/j.clinph.2006.09.003
    1. Smith G. E., Housen P., Yaffe K., Ruff R., Kennison R. F., Mahncke H. W., et al. . (2009). A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-Based Adaptive Cognitive Training (IMPACT) Study. J. Am. Geriatr. Soc. 57, 594–603. 10.1111/j.1532-5415.2008.02167.x
    1. Snowden M., Steinman L., Mochan K., Grodstein F., Prohaska T. R., Thurman D. J., et al. . (2011). Effect of exercise on cognitive performance in community-dwelling older adults: review of intervention trials and recommendations for public health practice and research. J. Am. Geriatr. Soc. 59, 704–716. 10.1111/j.1532-5415.2011.03323.x
    1. Sorg C., Riedl V., Mühlau M., Calhoun V. D., Eichele T., Läer L., et al. . (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 104, 18760–18765. 10.1073/pnas.0708803104
    1. Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., et al. . (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer Dement. 7, 280–292. 10.1016/j.jalz.2011.03.003
    1. Stam C. J., van der Made Y., Pijnenburg Y. A., Scheltens P. (2003). EEG Synchronization in Mild Cognitive Impairment and Alzheimer's Disease. Acta Neurol. Scand. 108, 90–96. 10.1034/j.1600-0404.2003.02067.x
    1. Styliadis C., Kartsidis P., Paraskevopoulos E. (2015a). Neuroimaging approaches for elderly studies, in Handbook of Research on Innovations in the Diagnosis and Treatment of Dementia, eds Bamidis P. D., Tarnanas I., Hadjileontiadis L., Tsolaki M. (IGI Global; ), 1–439.
    1. Styliadis C., Kartsidis P., Paraskevopoulos E., Ioannides A. A., Bamidis P. D. (2015b). Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: an eLORETA controlled study on resting states. Neural Plast. 2015:172192. 10.1155/2015/172192
    1. Subramaniam K., Vinogradov S. (2013). Improving the neural mechanisms of cognition through the pursuit of happiness. Front. Hum. Neurosci. 7:452. 10.3389/fnhum.2013.00452
    1. Tadel F., Baillet S., Mosher J. C., Pantazis D., Leahy R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011:879716. 10.1155/2011/879716
    1. Tardif S., Simard M. (2011). Cognitive stimulation programs in healthy elderly: a review. Int. J. Alzheimer Disease 2011:378934. 10.4061/2011/378934
    1. Thiyagesh S. N., Farrow T. F., Parks R. W., Accosta-Mesa H., Hunter M. D., Young C., et al. . (2010). Treatment effects of therapeutic cholinesterase inhibitors on visuospatial processing in Alzheimer's disease: a longitudinal functional MRI study. Dement. Geriatr. Cognit. Disord. 29, 176–188. 10.1159/000275674
    1. Tseng C. N., Gau B. S., Lou M. F. (2011). The effectiveness of exercise on improving cognitive function in older people: a systematic review. J. Nurs. Res. 19, 119–131. 10.1097/JNR.0b013e3182198837
    1. Vatta F., Meneghini F., Esposito F., Mininel S., Di Salle F. (2010). Realistic and spherical head modeling for eeg forward problem solution: a comparative cortex-based analysis. Comput. Intell. Neurosci. 2010, 1–11. 10.1155/2010/972060
    1. Wang K., Liang M., Wang L., Tian L., Zhang X., Li K., et al. . (2007). Altered functional connectivity in early Alzheimer's Disease: a resting-state fMRI study. Hum. Brain Mapp. 28, 967–978. 10.1002/hbm.20324
    1. Welch P. (1967). The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics 15, 70–73.
    1. Woodard J. L., Seidenberg M., Nielson K. A., Smith J. C., Antuono P., Durgerian S., et al. . (2010). Prediction of Cognitive decline in healthy older adults using fMRI. J. Alzheimer's Disease 21, 871–885. 10.3233/JAD-2010-091693
    1. Woodard J. L., Sugarman M. A., Nielson K. A., Smith J. C., Seidenberg M., Durgerian S., et al. . (2012). Lifestyle and genetic contributions to cognitive decline and hippocampal structure and function in healthy aging. Curr. Alzheimer Res. 9, 436–446.
    1. Zhou J., Gennatas E. D., Kramer J. H., Miller B. L., Seeley W. W. (2012). Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227. 10.1016/j.neuron.2012.03.004

Source: PubMed

3
Subskrybuj