Impaired Peripheral Endothelial Function Assessed by Digital Reactive Hyperemia Peripheral Arterial Tonometry and Risk of In-Stent Restenosis

Naohiro Komura, Kenichi Tsujita, Kenshi Yamanaga, Kenji Sakamoto, Koichi Kaikita, Seiji Hokimoto, Satomi Iwashita, Takashi Miyazaki, Tomonori Akasaka, Yuichiro Arima, Eiichiro Yamamoto, Yasuhiro Izumiya, Megumi Yamamuro, Sunao Kojima, Shinji Tayama, Seigo Sugiyama, Kunihiko Matsui, Sunao Nakamura, Kiyoshi Hibi, Kazuo Kimura, Satoshi Umemura, Hisao Ogawa, Naohiro Komura, Kenichi Tsujita, Kenshi Yamanaga, Kenji Sakamoto, Koichi Kaikita, Seiji Hokimoto, Satomi Iwashita, Takashi Miyazaki, Tomonori Akasaka, Yuichiro Arima, Eiichiro Yamamoto, Yasuhiro Izumiya, Megumi Yamamuro, Sunao Kojima, Shinji Tayama, Seigo Sugiyama, Kunihiko Matsui, Sunao Nakamura, Kiyoshi Hibi, Kazuo Kimura, Satoshi Umemura, Hisao Ogawa

Abstract

Background: Drug-eluting stents are replacing bare-metal stents, but in-stent restenosis (ISR) remains a problem. Reactive hyperemia index (RHI) assessed by peripheral arterial tonometry evaluates endothelial function noninvasively. We prospectively assessed the prognostic value of RHI in predicting ISR after percutaneous coronary intervention.

Methods and results: RHI was measured before percutaneous coronary intervention and at follow-up (F/U) angiography (F/U RHI; 6 and 9 months post bare-metal stents- and drug-eluting stents- percutaneous coronary intervention, respectively) in 249 consecutive patients. At F/U, ISR (stenosis >50% of diameter) was seen in 68 patients (27.3%). F/U natural logarithm (RHI) was significantly lower in patients with ISR than in those without (0.52±0.23 versus 0.65±0.27, P<0.01); no between-group difference in initial natural logarithm (RHI) (0.60±0.26 versus 0.62±0.25, P=0.56) was seen. By multivariate logistic regression analysis, even after adjusting for other significant parameters in univariate analysis, F/U natural logarithm (RHI) independently predicted ISR (odds ratio: 0.13; 95% CI: 0.04-0.48; P=0.002). In receiver operating-characteristic analysis, F/U RHI was the strongest predictor of ISR (area under the curve: 0.67; 95% CI: 0.60-0.75; P<0.01; RHI <1.73 had 67.6% sensitivity, 64.1% specificity); area under the curve significantly improved from 0.62 to 0.70 when RHI was added to traditional ISR risk factors (P=0.02). Net reclassification index was significant after addition of RHI (26.5%, P=0.002).

Conclusions: Impaired RHI at F/U angiography independently correlated with ISR, adding incremental prognostic value to the ISR-risk stratification following percutaneous coronary intervention.

Clinical trial registration: URL: https://www.clinicaltrials.gov/. Unique identifier: NCT02131935.

Keywords: endothelial dysfunction; reactive hyperemia; reactive hyperemia–peripheral arterial tonometry; restenosis; risk factor; stent.

© 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

Figures

Figure 1
Figure 1
Flowchart of patient enrollment in the present study. During the study F/U period, F/U CAG was not performed in 100 patients, and F/U RH‐PAT was not performed in 19 patients. Excluding these subjects, 249 patients represent the study population in the current study. BMS indicates bare‐metal stent; CAG, coronary angiography; DES, drug‐eluting stent; F/U, follow‐up; ISR, in‐stent restenosis; PCI, percutaneous coronary intervention; RH‐PAT, reactive hyperemia–peripheral arterial tonometry.
Figure 2
Figure 2
Representative records of RH‐PAT signals and CAG in ISR and non‐ISR patients. A, Typical ISR patient. B, Non‐ISR patient. CAG indicates coronary angiography; F/U, follow‐up; ISR, in‐stent restenosis; ln‐RHI, natural logarithm of reactive hyperemia–peripheral arterial tonometry index; PCI, percutaneous coronary intervention; RH‐PAT, reactive hyperemia–peripheral arterial tonometry.
Figure 3
Figure 3
RHI and ISR. ln(RHI) in ISR and non‐ISR patients at (A) index percutaneous coronary intervention and (B) F/U. Bars represent averages of the ln(RHI) in each group; error bars indicate 1 SD. F/U indicates follow‐up; ISR, in‐stent restenosis; ln(RHI), natural logarithm of reactive hyperemia–peripheral arterial tonometry index.
Figure 4
Figure 4
ROC curves to identify ISR. ROC curves for RHI identifying patients with ISR for (A) all patients, (B) patients with DES implantation, and (C) patients with BMS implantation. AUC for detection of ISR was 0.67 (95% CI: 0.60–0.75; P<0.01) of RHI in all patients, 0.67 (95% CI: 0.57–0.77; P<0.01) of RHI in DES‐only patients alone, and 0.68 (95% CI: 0.55–0.81; P=0.01) of RHI in BMS‐only patients. AUC indicates area under the curve; BMS, bare‐metal stent; DES, drug‐eluting stent; ISR, in‐stent restenosis; RHI, reactive hyperemia–peripheral arterial tonometry index; ROC, receiver operating characteristic.
Figure 5
Figure 5
Comparison of ROC curves to identify ISR between traditional risk factors only and traditional risk factors+RHI in all patients, DES patients, and BMS patients. ROC curves for traditional risk factors only and traditional risk factors+RHI to identify ISR in (A) all patients, (B) patients with DES implantation, and (C) patients with BMS implantation. AUC indicates area under the curve; BMS, bare‐metal stent; DES, drug‐eluting stent; ISR, in‐stent restenosis; RHI, reactive hyperemia–peripheral arterial tonometry index; ROC, receiver operating characteristic.

References

    1. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R; Lesions RAVEL Study Group . Randomized study with the sirolimus‐coated Bx velocity balloon‐expandable stent in the treatment of patients with de novo native coronary artery lesions. A randomized comparison of a sirolimus‐eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346:1773–1780.
    1. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE; SIRIUS Investigators . Sirolimus‐eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349:1315–1323.
    1. Ribamar Costa J, Sousa AG, Moreira A, Alves da Costa R, Cano MN, Maldonado G, Campos Neto C, Jardim C, Pavanello R, Sousa JE. Comparison of the very long term (>1 year) outcomes of drug‐eluting stents for the treatment of bare‐metal and drug‐eluting stent restenosis. EuroIntervention. 2009;5:448–453.
    1. Steinberg DH, Gaglia MA Jr, Pinto Slottow TL, Roy P, Bonello L, De Labriolle A, Lemesle G, Torguson R, Kineshige K, Xue Z, Suddath WO, Kent KM, Satler LF, Pichard AD, Lindsay J, Waksman R. Outcome differences with the use of drug‐eluting stents for the treatment of in‐stent restenosis of bare‐metal stents versus drug‐eluting stents. Am J Cardiol. 2009;103:491–495.
    1. Whan Lee C, Kim SH, Suh J, Park DW, Lee SH, Kim YH, Hong MK, Kim JJ, Park SW, Park SJ. Long‐term clinical outcomes after sirolimus‐eluting stent implantation for treatment of restenosis within bare‐metal versus drug‐eluting stents. Catheter Cardiovasc Interv. 2008;71:594–598.
    1. Giedd KN, Bergmann SR. Myocardial perfusion imaging following percutaneous coronary intervention: the importance of restenosis, disease progression, and directed reintervention. J Am Coll Cardiol. 2004;43:328–336.
    1. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium‐derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101:731–736.
    1. Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS, Virmani R. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999;99:44–52.
    1. Fichtlscherer S, Breuer S, Zeiher AM. Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes: further evidence for the existence of the “vulnerable” patient. Circulation. 2004;110:1926–1932.
    1. Hijmering ML, Stroes ES, Pasterkamp G, Sierevogel M, Banga JD, Rabelink TJ. Variability of flow mediated dilation: consequences for clinical application. Atherosclerosis. 2001;157:369–373.
    1. Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, Karas RH, Udelson JE. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J. 2003;146:168–174.
    1. Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM, Mitchell GF, Sheffy J, Vita JA, Benjamin EJ. Cross‐sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation. 2008;117:2467–2474.
    1. Fujisue K, Sugiyama S, Matsuzawa Y, Akiyama E, Sugamura K, Matsubara J, Kurokawa H, Maeda H, Hirata Y, Kusaka H, Yamamoto E, Iwashita S, Sumida H, Sakamoto K, Tsujita K, Kaikita K, Hokimoto S, Matsui K, Ogawa H. Prognostic significance of peripheral microvascular endothelial dysfunction in heart failure with reduced left ventricular ejection fraction. Circ J. 2015;79:2623–2631.
    1. Zou KH, O'Malley AJ, Mauri L. Receiver‐operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115:654–657.
    1. Stone GW, Parise H, Witzenbichler B, Kirtane A, Guagliumi G, Peruga JZ, Brodie BR, Dudek D, Mockel M, Lansky AJ, Mehran R. Selection criteria for drug‐eluting versus bare‐metal stents and the impact of routine angiographic follow‐up: 2‐year insights from the HORIZONS‐AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. J Am Coll Cardiol. 2010;56:1597–1604.
    1. Tu JV, Bowen J, Chiu M, Ko DT, Austin PC, He Y, Hopkins R, Tarride JE, Blackhouse G, Lazzam C, Cohen EA, Goeree R. Effectiveness and safety of drug‐eluting stents in Ontario. N Engl J Med. 2007;357:1393–1402.
    1. Yeh RW, Normand SL, Wolf RE, Jones PG, Ho KK, Cohen DJ, Cutlip DE, Mauri L, Kugelmass AD, Amin AP, Spertus JA. Predicting the restenosis benefit of drug‐eluting versus bare metal stents in percutaneous coronary intervention. Circulation. 2011;124:1557–1564.
    1. DeLong ER, DeLong DM, Clarke‐Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.
    1. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–172; discussion 207–112.
    1. Jukema JW, Verschuren JJ, Ahmed TA, Quax PH. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat Rev Cardiol. 2012;9:53–62.
    1. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994;14:753–759.
    1. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD. Ceramide changes the mediator of flow‐induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. Circ Res. 2014;115:525–532.
    1. Weil BR, Canty JM Jr. Ceramide signaling in the coronary microcirculation: a double‐edged sword? Circ Res. 2014;115:475–477.
    1. Bonetti PO, Pumper GM, Higano ST, Holmes DR Jr, Kuvin JT, Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol. 2004;44:2137–2141.
    1. Matsuzawa Y, Sugiyama S, Sumida H, Sugamura K, Nozaki T, Ohba K, Matsubara J, Kurokawa H, Fujisue K, Konishi M, Akiyama E, Suzuki H, Nagayoshi Y, Yamamuro M, Sakamoto K, Iwashita S, Jinnouchi H, Taguri M, Morita S, Matsui K, Kimura K, Umemura S, Ogawa H. Peripheral endothelial function and cardiovascular events in high‐risk patients. J Am Heart Assoc. 2013;2:e000426 doi: .
    1. Matsuzawa Y, Sugiyama S, Sugamura K, Nozaki T, Ohba K, Konishi M, Matsubara J, Sumida H, Kaikita K, Kojima S, Nagayoshi Y, Yamamuro M, Izumiya Y, Iwashita S, Matsui K, Jinnouchi H, Kimura K, Umemura S, Ogawa H. Digital assessment of endothelial function and ischemic heart disease in women. J Am Coll Cardiol. 2010;55:1688–1696.
    1. Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, Ohba K, Matsubara J, Maeda H, Horibata Y, Sakamoto K, Sugamura K, Yamamuro M, Sumida H, Kaikita K, Iwashita S, Matsui K, Kimura K, Umemura S, Ogawa H. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol. 2012;60:1778–1786.
    1. Hirata Y, Sugiyama S, Yamamoto E, Matsuzawa Y, Akiyama E, Kusaka H, Fujisue K, Kurokawa H, Matsubara J, Sugamura K, Maeda H, Iwashita S, Jinnouchi H, Matsui K, Ogawa H. Endothelial function and cardiovascular events in chronic kidney disease. Int J Cardiol. 2014;173:481–486.
    1. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111:363–368.
    1. Schnabel RB, Schulz A, Wild PS, Sinning CR, Wilde S, Eleftheriadis M, Herkenhoff S, Zeller T, Lubos E, Lackner KJ, Warnholtz A, Gori T, Blankenberg S, Munzel T. Noninvasive vascular function measurement in the community: cross‐sectional relations and comparison of methods. Circ Cardiovasc Imaging. 2011;4:371–380.
    1. Kitta Y, Nakamura T, Kodama Y, Takano H, Umetani K, Fujioka D, Saito Y, Kawabata K, Obata JE, Ichigi Y, Mende A, Kugiyama K. Endothelial vasomotor dysfunction in the brachial artery is associated with late in‐stent coronary restenosis. J Am Coll Cardiol. 2005;46:648–655.
    1. Patti G, Pasceri V, Melfi R, Goffredo C, Chello M, D'Ambrosio A, Montesanti R, Di Sciascio G. Impaired flow‐mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation. 2005;111:70–75.
    1. Cornelissen VA, Onkelinx S, Goetschalckx K, Thomaes T, Janssens S, Fagard R, Verhamme P, Vanhees L. Exercise‐based cardiac rehabilitation improves endothelial function assessed by flow‐mediated dilation but not by pulse amplitude tonometry. Eur J Prev Cardiol. 2014;21:39–48.
    1. Matsue Y, Matsumura A, Suzuki M, Hashimoto Y, Yoshida M. Differences in action of atorvastatin and ezetimibe in lowering low‐density lipoprotein cholesterol and effect on endothelial function: randomized controlled trial. Circ J. 2013;77:1791–1798.
    1. Philpott AC, Hubacek J, Sun YC, Hillard D, Anderson TJ. Niacin improves lipid profile but not endothelial function in patients with coronary artery disease on high dose statin therapy. Atherosclerosis. 2013;226:453–458.
    1. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, Hamburg NM, Luscher TF, Shechter M, Taddei S, Vita JA, Lerman A. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–767.
    1. Vlachopoulos C. Progress towards identifying biomarkers of vascular aging for total cardiovascular risk prediction. J Hypertens. 2012;30(suppl):S19–S26.
    1. Ras RT, Streppel MT, Draijer R, Zock PL. Flow‐mediated dilation and cardiovascular risk prediction: a systematic review with meta‐analysis. Int J Cardiol. 2013;168:344–351.
    1. Yeboah J, Folsom AR, Burke GL, Johnson C, Polak JF, Post W, Lima JA, Crouse JR, Herrington DM. Predictive value of brachial flow‐mediated dilation for incident cardiovascular events in a population‐based study: the Multi‐Ethnic Study of Atherosclerosis. Circulation. 2009;120:502–509.
    1. Bonetti PO, Barsness GW, Keelan PC, Schnell TI, Pumper GM, Kuvin JT, Schnall RP, Holmes DR, Higano ST, Lerman A. Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease. J Am Coll Cardiol. 2003;41:1761–1768.
    1. Hamburg NM, Palmisano J, Larson MG, Sullivan LM, Lehman BT, Vasan RS, Levy D, Mitchell GF, Vita JA, Benjamin EJ. Relation of brachial and digital measures of vascular function in the community: the Framingham Heart Study. Hypertension. 2011;57:390–396.

Source: PubMed

3
Subskrybuj