Using multimarker screening to identify biomarkers associated with cardiovascular death in patients with atrial fibrillation

Tymon Pol, Ziad Hijazi, Johan Lindbäck, Jonas Oldgren, John H Alexander, Stuart J Connolly, John W Eikelboom, Michael D Ezekowitz, Christopher B Granger, Renato D Lopes, Salim Yusuf, Agneta Siegbahn, Lars Wallentin, Tymon Pol, Ziad Hijazi, Johan Lindbäck, Jonas Oldgren, John H Alexander, Stuart J Connolly, John W Eikelboom, Michael D Ezekowitz, Christopher B Granger, Renato D Lopes, Salim Yusuf, Agneta Siegbahn, Lars Wallentin

Abstract

Aims: Atrial fibrillation (AF) is associated with higher mortality. Biomarkers may improve the understanding of key pathophysiologic processes in AF that lead to death. Using a new multiplex analytic technique, we explored the association between 268 biomarkers and cardiovascular (CV) death in anticoagulated patients with AF.

Methods and results: A case-cohort design with 1.8- to 1.9-year follow-up. The identification cohort included 517 cases and 4057 randomly selected patients from ARISTOTLE. The validation cohort included 277 cases and 1042 randomly selected controls from RE-LY. Plasma collected at randomization was analysed with conventional immunoassays and the OLINK proximity extension assay panels: CVDII, CVDIII, and Inflammation. Association between biomarkers and CV death was evaluated using Random Survival Forest, Boruta, and adjusted Cox-regression analyses. The biomarkers most strongly and consistently associated with CV death were as follows (hazard ratio for inter-quartile comparison [95% CI]): N-terminal pro-B-type natriuretic peptide [NT-proBNP; 1.63 (1.37-1.93)], cardiac troponin T [cTnT-hs; 1.60 (1.35-1.88)], interleukin-6 [IL-6; 1.29 (1.13-1.47)], growth differentiation factor-15 [GDF-15; 1.30 (1.10-1.53)], fibroblast growth factor 23 [FGF-23; 1.21 (1.10-1.33)], urokinase receptor [uPAR; 1.38 (1.16-1.64)], trefoil factor 3 [TFF3; 1.27 (1.10-1.46)], tumour necrosis factor receptor 1 [TNFR1; 1.21 (1.01-1.45)], TNF-related apoptosis-inducing ligand receptor 2 [TRAILR2; 1.18 (1.04-1.34)], and cathepsin L1 [CTSL1; 1.22 (1.07-1.39)].

Conclusion: In this comprehensive screening of 268 biomarkers in anticoagulated patients with AF, the underlying mechanisms most strongly associated with CV death were cardiorenal dysfunction (NT-proBNP, cTnT-hs, CTSL1, TFF3), oxidative stress (GDF-15), inflammation (IL-6, GDF-15), calcium balance, vascular and renal dysfunction (FGF-23), fibrinolysis (suPAR), and apoptosis (TNFR1, TRAILR2). These findings provide novel insights into pathophysiologic aspects associated with CV death in AF.

Clinicaltrials.gov identifier: NCT00412984 and NCT00262600.

Keywords: Atrial fibrillation; Biomarkers; Cardiovascular death; Proteomics; Risk.

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figures

Figure 1
Figure 1
Variable importance for CV death according to the Random Survival Forest analyses in (A) the identification cohort and (B) the validation cohort. Red colour indicates biomarkers analysed on CVD II panel, green colour CVD III, and blue colour inflammation panel. Biomarkers listed in black were analysed with conventional immunoassays. Only the top 50 variables are shown. The evaluation included 263 PEA markers, five conventional markers [N-terminal pro-B-type natriuretic peptide (NT-proBNP), troponin T-hs, growth differentiation factor 15 (GDF-15), cystatin C, and interleukin-6 (IL-6)] and 13 clinical characteristics. The identification cohort included 517 cases with CV death during follow-up and 4057 randomly selected patients for comparison. The validation cohort included 277 cases with CV death during follow-up and 1042 randomly selected patients for comparison.
Figure 2
Figure 2
Forest plot of the top 50 biomarkers associated with CV death according to adjusted Cox-regression analysis in (A) the identification cohort and (B) the validation cohort (by P-value). A forest plot showing all 255 biomarkers is available in Supplementary material online, Figures S1 and S2. Red colour indicates biomarkers analysed on CVD II panel, green colour CVD III, and blue colour inflammation panel. Biomarkers listed in black were analysed with conventional immunoassays. Model adjusted for baseline characteristics, renal function, and cardiac biomarkers [N-terminal pro-B-type natriuretic peptide (NT-proBNP), cardiac troponin T (cTnT-hs)]. The identification cohort included 517 cases with CV death during follow-up and 4057 randomly selected patients for comparison. The validation cohort included 277 cases with CV death during follow-up and 1042 randomly selected patients for comparison.
Figure 3
Figure 3
Conceptual figure showing top biomarkers and their associated processes in relation to CV death in AF.

References

    1. Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA.. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. BMJ 2016;354:i4482.
    1. Hart RG, Pearce LA, Aguilar MI.. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146:857–867.
    1. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, Ezekowitz JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, Hermosillo AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L; ARISTOTLE Committees and Investigators . Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981–992.
    1. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L; RE-LY Steering Committee and Investigators . Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139–1151.
    1. Hijazi Z, Wallentin L, Siegbahn A, Andersson U, Alexander JH, Atar D, Gersh BJ, Hanna M, Harjola VP, Horowitz JD, Husted S, Hylek EM, Lopes RD, McMurray JJ, Granger CB; ARISTOTLE Investigators . High-sensitivity troponin T and risk stratification in patients with atrial fibrillation during treatment with apixaban or warfarin. J Am Coll Cardiol 2014;63:52–61.
    1. Hijazi Z, Wallentin L, Siegbahn A, Andersson U, Christersson C, Ezekowitz J, Gersh BJ, Hanna M, Hohnloser S, Horowitz J, Huber K, Hylek EM, Lopes RD, McMurray JJ, Granger CB.. N-terminal pro-B-type natriuretic peptide for risk assessment in patients with atrial fibrillation: insights from the ARISTOTLE Trial (Apixaban for the Prevention of Stroke in Subjects With Atrial Fibrillation). J Am Coll Cardiol 2013;61:2274–2284.
    1. Wallentin L, Hijazi Z, Andersson U, Alexander JH, De Caterina R, Hanna M, Horowitz JD, Hylek EM, Lopes RD, Asberg S, Granger CB, Siegbahn A; ARISTOTLE Investigators . Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation 2014;130:1847–1858.
    1. Aulin J, Siegbahn A, Hijazi Z, Ezekowitz MD, Andersson U, Connolly SJ, Huber K, Reilly PA, Wallentin L, Oldgren J.. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation. Am Heart J 2015;170:1151–1160.
    1. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht Thorsen S, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson A-C, Lindstedt P, Stenvang J, Gullberg M and Fredriksson S. Homogenous 96‐plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One. 2014;9:e95192.
    1. Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J, Gullberg M, Fredriksson S.. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS One 2014;9:e95192.
    1. Siegbahn A, Eriksson S, Lindbäck J, Wallentin LA.. Comparison of the proximity extension assay with established immunoassays. Science. 2017; sponsored supplement: 22–5.
    1. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS.. Random survival forests. Ann Appl Stat 2008;2:841–860.
    1. Buuren SV, Groothuis-Oudshoorn K.. mice: multivariate imputation by chained equations in R. J Stat Software 2011;45:1–67.
    1. Miron B, Kursa WRR.. Feature selection with the Boruta package. J Stat Software 2010;36:1–13.
    1. R_Core_Team . A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
    1. Wright MN, Ziegler A.. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Software 2017;77:1–17.
    1. Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E.. Prevention of events with angiotensin converting enzyme inhibition Trial I: a sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med 2009;361:2538–2547.
    1. Hijazi Z, Oldgren J, Andersson U, Connolly SJ, Ezekowitz MD, Hohnloser SH, Reilly PA, Vinereanu D, Siegbahn A, Yusuf S, Wallentin L.. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) substudy. Circulation 2012;125:1605–1616.
    1. Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JE, Shah T, Sofat R, Guo Y, Chung C, Peasey A, Pfister R, Mooijaart SP, Ireland HA, Leusink M, Langenberg C, Li KW, Palmen J, Howard P, Cooper JA, Drenos F, Hardy J, Nalls MA, Li YR, Lowe G, Stewart M, Bielinski SJ, Peto J, Timpson NJ, Gallacher J, Dunlop M, Houlston R, Tomlinson I, Tzoulaki I, Luan J, Boer JM, Forouhi NG, Onland-Moret NC, van der Schouw YT, Schnabel RB, Hubacek JA, Kubinova R, Baceviciene M, Tamosiunas A, Pajak A, Topor-Madry R, Malyutina S, Baldassarre D, Sennblad B, Tremoli E, de Faire U, Ferrucci L, Bandenelli S, Tanaka T, Meschia JF, Singleton A, Navis GM, Leach I, Bakker SJ, Gansevoort RT, Ford I, Epstein SE, Burnett MS, Devaney JM, Jukema JW, Westendorp RGJ, de Borst G, van der Graaf Y, de Jong PA, Mailand-van der Zee AH, Klungel OH, de Boer A, Doevendans PA, Stephens JW, Eaton CB, Robinson JG, Manson JE, Fowkes FG, Frayling TM, Price JF, Whincup PH, Morris RW, Lawlor DA, Smith GD, Ben-Shlomo Y, Redline S, Lange LA, Kumari M, Wareham NJ, Verschuren WM, Benjamin EJ, Whittaker JC, Hamsten A, Dudbridge F, Delaney JA, Wong A, Kuh D, Hardy R, Castillo BA, Connolly JJ, van der Harst P, Brunner EJ, Marmot MG, Wassel CL, Humphries SE, Talmud PJ, Kivimaki M, Asselbergs FW, Voevoda M, Bobak M, Pikhart H, Wilson JG, Hakonarson H, Reiner AP, Keating BJ, Sattar N, Hingorani AD, Casas JP; Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium . The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 2012; 379(9822):1214–1224.
    1. Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, Gorman DN, Gao P, Saleheen D, Rendon A, Nelson CP, Braund PS, Hall AS, Chasman DI, Tybjærg-Hansen A, Chambers JC, Benjamin EJ, Franks PW, Clarke R, Wilde AAM, Trip MD, Steri M, Witteman JCM, Qi L, van der Schoot CE, de Faire U, Erdmann J, Stringham HM, Koenig W, Rader DJ, Melzer D, Reich D, Psaty BM, Kleber ME, Panagiotakos DB, Willeit J, Wennberg P, Woodward M, Adamovic S, Rimm EB, Meade TW, Gillum RF, Shaffer JA, Hofman A, Onat A, Sundström J, Wassertheil-Smoller S, Mellström D, Gallacher J, Cushman M, Tracy RP, Kauhanen J, Karlsson M, Salonen JT, Wilhelmsen L, Amouyel P, Cantin B, Best LG, Ben-Shlomo Y, Manson JE, Davey-Smith G, de Bakker PIW, O'Donnell CJ, Wilson JF, Wilson AG, Assimes TL, Jansson J-O, Ohlsson C, Tivesten Å, Ljunggren Ö, Reilly MP, Hamsten A, Ingelsson E, Cambien F, Hung J, Thomas GN, Boehnke M, Schunkert H, Asselbergs FW, Kastelein JJP, Gudnason V, Salomaa V, Harris TB, Kooner JS, Allin KH, Nordestgaard BG, Hopewell JC, Goodall AH, Ridker PM, Hólm H, Watkins H, Ouwehand WH, Samani NJ, Kaptoge S, Di Angelantonio E, Harari O, Danesh J; Collaboration IRGCERF . Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 2012;379:1205–1213.
    1. Amdur RL, Mukherjee M, Go A, Barrows IR, Ramezani A, Shoji J, Reilly MP, Gnanaraj J, Deo R, Roas S, Keane M, Master S, Teal V, Soliman EZ, Yang P, Feldman H, Kusek JW, Tracy CM, Raj DS; CRIC Study Investigators . Interleukin-6 is a risk factor for atrial fibrillation in chronic kidney disease: findings from the CRIC study. PLoS One 2016;11:e0148189.
    1. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS Trial Group . Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377:1119–1131.
    1. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, Ponikowski P, Filippatos GS, Rozentryt P, Drexler H, Anker SD, Wollert KC.. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol 2007;50:1054–1060.
    1. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, Heineke J, Kotlarz D, Xu J, Molkentin JD, Niessen HW, Drexler H, Wollert KC.. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res 2006;98:351–360.
    1. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M.. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011;79:1370–1378.
    1. Haring R, Enserro D, Xanthakis V, Mitchell GF, Benjamin EJ, Hamburg NM, Sullivan L, Nauck M, Wallaschofski H, Vasan RS.. Plasma fibroblast growth factor 23: clinical correlates and association with cardiovascular disease and mortality in the Framingham Heart Study. J Am Heart Assoc 2016;5:e003486.
    1. Bergmark BA, Udell JA, Morrow DA, Cannon CP, Steen DL, Jarolim P, Budaj A, Hamm C, Guo J, Im K, Kuder JF, Braunwald E, Sabatine MS, O'Donoghue ML.. Association of fibroblast growth factor 23 with recurrent cardiovascular events in patients after an acute coronary syndrome: a secondary analysis of a randomized clinical trial. JAMA Cardiol 2018;3:473–480.
    1. Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M.. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008;359:584–592.
    1. Nowak A, Friedrich B, Artunc F, Serra AL, Breidthardt T, Twerenbold R, Peter M, Mueller C.. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PloS One 2014;9:e100688.
    1. Mathew JS, Sachs MC, Katz R, Patton KK, Heckbert SR, Hoofnagle AN, Alonso A, Chonchol M, Deo R, Ix JH, Siscovick DS, Kestenbaum B, de Boer IH.. Fibroblast growth factor-23 and incident atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Circulation 2014;130:298–307.
    1. Chua W, Purmah Y, Cardoso VR, Gkoutos GV, Tull SP, Neculau G, Thomas MR, Kotecha D, Lip GYH, Kirchhof P, Fabritz L.. Data-driven discovery and validation of circulating blood-based biomarkers associated with prevalent atrial fibrillation. Eur Heart J 2019;40:1268–1276.
    1. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstadt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C.. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 2015;22:1020–1032.
    1. Grabner A, Schramm K, Silswal N, Hendrix M, Yanucil C, Czaya B, Singh S, Wolf M, Hermann S, Stypmann J, Di Marco GS, Brand M, Wacker MJ, Faul C.. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci Rep 2017;7:1993.
    1. Waltz DA, Fujita RM, Yang X, Natkin L, Zhuo S, Gerard CJ, Rosenberg S, Chapman HA.. Nonproteolytic role for the urokinase receptor in cellular migration in vivo. Am J Respir Cell Mol Biol 2000;22:316–322.
    1. Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen TW, Langkilde A, Petersen J, Pielak T, Møller LN, Jeppesen J, Lyngbaek S, Fenger M, Olsen MH, Hildebrandt PR, Borch-Johnsen K, Jørgensen T, Haugaard SB.. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med 2010;268:296–308.
    1. Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, Sperling LS, Lerakis S, Quyyumi AA, Reiser J.. Soluble urokinase receptor and chronic kidney disease. N Engl J Med 2015;373:1916–1925.
    1. Borné Y, Persson M, Melander O, Smith JG, Engström G.. Increased plasma level of soluble urokinase plasminogen activator receptor is associated with incidence of heart failure but not atrial fibrillation. Eur J Heart Fail 2014;16:377–383.
    1. Westin O, Rasmussen LJH, Andersen O, Buch E, Olsen JE, Friberg J.. Soluble urokinase plasminogen activator receptor (suPAR) as a predictor of incident atrial fibrillation. J Atr Fibrillation 2018;10:1801.
    1. Moriwaki H, Stempien-Otero A, Kremen M, Cozen AE, Dichek DA.. Overexpression of urokinase by macrophages or deficiency of plasminogen activator inhibitor type 1 causes cardiac fibrosis in mice. Circ Res 2004;95:637–644.
    1. Fuhrman B. The urokinase system in the pathogenesis of atherosclerosis. Atherosclerosis 2012;222:8–14.
    1. Idriss HT, Naismith JT.. Alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 2000;50:184–195.
    1. Niethammer M, Sieber M, von Haehling S, Anker SD, Munzel T, Horstick G, Genth-Zotz S.. Inflammatory pathways in patients with heart failure and preserved ejection fraction. Int J Cardiol 2008;129:111–117.
    1. Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM.. Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 2004;109:1892–1897.
    1. Marti CN, Khan H, Mann DL, Georgiopoulou VV, Bibbins-Domingo K, Harris T, Koster A, Newman A, Kritchevsky SB, Kalogeropoulos AP, Butler J, Health ABC Study . Soluble tumor necrosis factor receptors and heart failure risk in older adults: Health, Aging, and Body Composition (Health ABC) Study. Circ Heart Fail 2014;7:5–11.
    1. Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G, Scheurich P, Moosmayer D, Tschopp J, Wajant H.. The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 2000;275:32208–32213.
    1. Stenemo M, Nowak C, Byberg L, Sundstrom J, Giedraitis V, Lind L, Ingelsson E, Fall T, Arnlov J.. Circulating proteins as predictors of incident heart failure in the elderly. Eur J Heart Fail 2018;20:55–62.
    1. Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J.. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol 2017;24:1576–1583.
    1. Turk B, Turk D, Turk V.. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000;1477:98–111.
    1. Stypmann J, Glaser K, Roth W, Tobin DJ, Petermann I, Matthias R, Monnig G, Haverkamp W, Breithardt G, Schmahl W, Peters C, Reinheckel T.. Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci USA 2002;99:6234–6239.
    1. Sun M, Chen M, Liu Y, Fukuoka M, Zhou K, Li G, Dawood F, Gramolini A, Liu PP.. Cathepsin-L contributes to cardiac repair and remodelling post-infarction. Cardiovasc Res 2011;89:374–383.
    1. Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP.. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2013;2:e000191.
    1. Dudink EA, Weijs B, Tull S, Luermans JG, Fabritz L, Chua W, Rienstra M, Gelder ICV, Schotten U, Kirchhof P, Crijns HJ.. The biomarkers NT-proBNP and CA-125 are elevated in patients with idiopathic atrial fibrillation. J Atr Fibrillation 2018;11:2058.
    1. Camelo-Castillo A, Rivera-Caravaca JM, Marín F, Vicente V, Lip GYH, Roldán V.. Predicting adverse events beyond stroke and bleeding with the ABC-stroke and ABC-bleeding scores in patients with atrial fibrillation: the Murcia AF Project. Thromb Haemost 2020;120:1200–1207.
    1. Myhre PL, Prebensen C, Strand H, Roysland R, Jonassen CM, Rangberg A, Sorensen V, Sovik S, Rosjo H, Svensson M, Berdal JE, Omland T.. Growth differentiation factor 15 provides prognostic information superior to established cardiovascular and inflammatory biomarkers in unselected patients hospitalized with COVID-19. Circulation 2020;142:2128–2137.
    1. Wollert KC, Kempf T, Wallentin L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin Chem. 2017;63:140–151.
    1. Esteve-Pastor MA, Roldán V, Rivera-Caravaca JM, Ramírez-Macías I, Lip GYH, Marín F.. The use of biomarkers in clinical management guidelines: a critical appraisal. Thromb Haemost 2019;119:1901–1919.

Source: PubMed

3
Prenumerera