A Phase 2a cohort expansion study to assess the safety, tolerability, and preliminary efficacy of CXD101 in patients with advanced solid-organ cancer expressing HR23B or lymphoma

Stephen W Booth, Toby A Eyre, John Whittaker, Leticia Campo, Lai Mun Wang, Elizabeth Soilleux, Daniel Royston, Gabrielle Rees, Murali Kesavan, Catherine Hildyard, Farasat Kazmi, Nick La Thangue, David Kerr, Mark R Middleton, Graham P Collins, Stephen W Booth, Toby A Eyre, John Whittaker, Leticia Campo, Lai Mun Wang, Elizabeth Soilleux, Daniel Royston, Gabrielle Rees, Murali Kesavan, Catherine Hildyard, Farasat Kazmi, Nick La Thangue, David Kerr, Mark R Middleton, Graham P Collins

Abstract

Background: This Phase 2a dose expansion study was performed to assess the safety, tolerability and preliminary efficacy of the maximum tolerated dose of the oral histone de-acetylase (HDAC) inhibitor CXD101 in patients with relapsed / refractory lymphoma or advanced solid organ cancers and to assess HR23B protein expression by immunohistochemistry as a biomarker of HDAC inhibitor sensitivity.

Methods: Patients with advanced solid-organ cancers with high HR23B expression or lymphomas received CXD101 at the recommended phase 2 dose (RP2D). Key exclusions: corrected QT > 450 ms, neutrophils < 1.5 × 109/L, platelets < 75 × 109/L, ECOG > 1. Baseline HR23B expression was assessed by immunohistochemistry.

Results: Fifty-one patients enrolled between March 2014 and September 2019, 47 received CXD101 (19 solid-organ cancer, 28 lymphoma). Thirty-four patients received ≥80% RP2D. Baseline characteristics: median age 57.4 years, median prior lines 3, male sex 57%. The most common grade 3-4 adverse events were neutropenia (32%), thrombocytopenia (17%), anaemia (13%), and fatigue (9%) with no deaths on CXD101. No responses were seen in solid-organ cancers, with disease stabilisation in 36% or patients; the overall response rate in lymphoma was 17% with disease stabilisation in 52% of patients. Median progression-free survival was 1.2 months (95% confidence interval (CI) 1.2-5.4) in solid-organ cancers and 2.6 months (95%CI 1.2-5.6) in lymphomas. HR23B status did not predict response.

Conclusions: CXD101 showed acceptable tolerability with efficacy seen in Hodgkin lymphoma, T-cell lymphoma and follicular lymphoma. Further studies assessing combination approaches are warranted.

Trial registration: ClinicalTrials.gov identifier NCT01977638 . Registered 07 November 2013.

Keywords: Biomarker; HR23B; Histone deacetylase (HDAC); Lymphoma.

Conflict of interest statement

Graham P. Collins has received personal fees from Celleron Therapeutics for work performed as part of the current study. John Whittaker, Nick La Thangue, and David Kerr are directors of Celleron Therapeutics. Celleron Therapeutics was involved in the design of the study. The Oxford Centre for Experimental Cancer Medicine was involved in design of the study, data collection, analysis, and interpretation.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Swimmer plot of treatment duration by CXD101 dose and tumour histology * Recommended Phase 2 dose
Fig. 2
Fig. 2
Best tumour responses in patients with lymphoma evaluable for response. Best tumour responses as assessed by sum of product diameters of target lesions in evaluable patients with lymphoma (in percentage) for CXD101 doses of ≥16 mg twice daily in patients shown according to baseline tumour HR23B status by immunohistochemistry and best disease response by Cheson et al. [21]. Two patients (1 FL and 1cHL) were not evaluable for objective response but clinically had a best response of progressive disease. * denotes patients with reduction in target lesions but clear progression of non-target lesions and / or new lesions. cHL classic Hodgkin lymphoma; GZL grey zone lymphoma; AITL angioimmunoblastic T-cell lymphoma; PTCL Peripheral T-cell lymphoma NOS; FL follicular lymphoma

References

    1. Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17(5):284–299. doi: 10.1038/nrg.2016.13.
    1. Li W, Sun Z. Mechanism of action for HDAC inhibitors-insights from Omics approaches. Int J Mol Sci. 2019;20(7):1616. doi: 10.3390/ijms20071616.
    1. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R. Chemical phylogenetics of histone deacetylases. Nat Chem Biol. 2010;6(3):238–243. doi: 10.1038/nchembio.313.
    1. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606. doi: 10.1016/S0092-8674(00)80521-8.
    1. Suraweera A, O'Byrne KJ, Richard DJ. Combination therapy with histone Deacetylase inhibitors (HDACi) for the treatment of Cancer: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8:92. doi: 10.3389/fonc.2018.00092.
    1. Richardson PG, Schlossman RL, Alsina M, Weber DM, Coutre SE, Gasparetto C, Mukhopadhyay S, Ondovik MS, Khan M, Paley CS, Lonial S. PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood. 2013;122(14):2331–2337. doi: 10.1182/blood-2013-01-481325.
    1. Wolf JL, Siegel D, Goldschmidt H, Hazell K, Bourquelot PM, Bengoudifa BR, Matous J, Vij R, de Magalhaes-Silverman M, Abonour R, Anderson KC, Lonial S. Phase II trial of the pan-deacetylase inhibitor panobinostat as a single agent in advanced relapsed/refractory multiple myeloma. Leuk Lymphoma. 2012;53(9):1820–1823. doi: 10.3109/10428194.2012.661175.
    1. Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, Caballero D, Borchmann P, Morschhauser F, Wilhelm M, Pinter-Brown L, Padmanabhan S, Shustov A, Nichols J, Carroll S, Balser J, Balser B, Horwitz S. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol. 2012;30(6):631–636. doi: 10.1200/JCO.2011.37.4223.
    1. Foss F, Advani R, Duvic M, Hymes KB, Intragumtornchai T, Lekhakula A, Shpilberg O, Lerner A, Belt RJ, Jacobsen ED, Laurent G, Ben-Yehuda D, Beylot-Barry M, Hillen U, Knoblauch P, Bhat G, Chawla S, Allen LF, Pohlman B. A phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br J Haematol. 2015;168(6):811–819. doi: 10.1111/bjh.13222.
    1. Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schöffski P. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investig New Drugs. 2008;26(5):483–488. doi: 10.1007/s10637-008-9131-6.
    1. Rathkopf DE, Picus J, Hussain A, Ellard S, Chi KN, Nydam T, Allen-Freda E, Mishra KK, Porro MG, Scher HI, Wilding G. A phase 2 study of intravenous panobinostat in patients with castration-resistant prostate cancer. Cancer Chemother Pharmacol. 2013;72(3):537–544. doi: 10.1007/s00280-013-2224-8.
    1. Whittaker SJ, Demierre M-F, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28(29):4485–4491. doi: 10.1200/JCO.2010.28.9066.
    1. O'Connor OA, Horwitz S, Masszi T, Van Hoof A, Brown P, Doorduijn J, Hess G, Jurczak W, Knoblauch P, Chawla S, Bhat G, Choi MR, Walewski J, Savage K, Foss F, Allen LF, Shustov A. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J Clin Oncol. 2015;33(23):2492–2499. doi: 10.1200/JCO.2014.59.2782.
    1. Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M, Horinouchi S. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62(17):4916–4921.
    1. Dokmanovic M, Clarke C, Marks PA. Histone Deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5(10):981–989. doi: 10.1158/1541-7786.MCR-07-0324.
    1. Connolly RM, Rudek MA, Piekarz R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol (London, England) 2017;13(13):1137–1148. doi: 10.2217/fon-2016-0526.
    1. Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F, Bernards R, La Thangue NB. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell. 2009;15(1):57–66. doi: 10.1016/j.ccr.2008.12.001.
    1. Khan O, Fotheringham S, Wood V, Stimson L, Zhang C, Pezzella F, Duvic M, Kerr DJ, La Thangue NB. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc Natl Acad Sci U S A. 2010;107(14):6532–6537. doi: 10.1073/pnas.0913912107.
    1. Yeo W, Chung HC, Chan SL, Wang LZ, Lim R, Picus J, Boyer M, Mo FK, Koh J, Rha SY, Hui EP, Jeung HC, Roh JK, Yu SC, To KF, Tao Q, Ma BB, Chan AW, Tong JH, Erlichman C, Chan AT, Goh BC. Epigenetic therapy using belinostat for patients with unresectable hepatocellular carcinoma: a multicenter phase I/II study with biomarker and pharmacokinetic analysis of tumors from patients in the Mayo Phase II Consortium and the Cancer Therapeutics Research Group. J Clin Oncol. 2012;30(27):3361–3367. doi: 10.1200/JCO.2011.41.2395.
    1. Eyre TA, Collins GP, Gupta A, Coupe N, Sheikh S, Whittaker J, Wang LM, Campo L, Soilleux E, Tysoe F, Cousins R, La Thangue N, Folkes LK, Stratford MRL, Kerr D, Middleton MR. A phase 1 study to assess the safety, tolerability, and pharmacokinetics of CXD101 in patients with advanced cancer. Cancer. 2019;125(1):99–108. doi: 10.1002/cncr.31791.
    1. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, Lister TA. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–3068. doi: 10.1200/JCO.2013.54.8800.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Thanarajasingam G, Minasian LM, Baron F, Cavalli F, De Claro RA, Dueck AC, El-Galaly TC, Everest N, Geissler J, Gisselbrecht C, Gribben J, Horowitz M, Ivy SP, Jacobson CA, Keating A, Kluetz PG, Krauss A, Kwong YL, Little RF, Mahon FX, Matasar MJ, Mateos MV, McCullough K, Miller RS, Mohty M, Moreau P, Morton LM, Nagai S, Rule S, Sloan J, Sonneveld P, Thompson CA, Tzogani K, van Leeuwen FE, Velikova G, Villa D, Wingard JR, Wintrich S, Seymour JF, Habermann TM. Beyond maximum grade: modernising the assessment and reporting of adverse events in haematological malignancies. Lancet Haematol. 2018;5(11):563–e598. doi: 10.1016/S2352-3026(18)30051-6.
    1. Kaplan EL, Meier P. Nonparametric-estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–481. doi: 10.1080/01621459.1958.10501452.
    1. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM, Frankel SR. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL) Blood. 2007;109(1):31–39. doi: 10.1182/blood-2006-06-025999.
    1. Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem. 1998;67(1):545–579. doi: 10.1146/annurev.biochem.67.1.545.
    1. Sanaei M, Kavoosi F. Histone Deacetylases and histone Deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv Biomed Res. 2019;8:63. doi: 10.4103/abr.abr_142_19.
    1. Yu X, Li H, Zhu M, Hu P, Liu X, Qing Y, Wang X, Wang H, Wang Z, Xu J, Tan R, Guo Q, Hui H. Involvement of p53 Acetylation in Growth Suppression of Cutaneous T-Cell Lymphomas Induced by HDAC Inhibition. J Invest Dermatol. 2020;140(10):2009–2022. doi: 10.1016/j.jid.2019.12.041.
    1. Blaszczak W, Liu G, Zhu H, Barczak W, Shrestha A, Albayrak G, et al. Immune modulation underpins the anti-cancer activity of HDAC inhibitors. Mol Oncol. 2021. 10.1002/1878-0261.12953.
    1. Souri Z, Jochemsen AG, Versluis M, Wierenga APA, Nemati F, van der Velden PA, et al. HDAC Inhibition Increases HLA Class I Expression in Uveal Melanoma. Cancers (Basel). 2020;12(12):3690. 10.3390/cancers12123690.
    1. Ritter C, Fan K, Paschen A, Reker Hardrup S, Ferrone S, Nghiem P, Ugurel S, Schrama D, Becker JC. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma. Sci Rep. 2017;7(1):2290. doi: 10.1038/s41598-017-02608-0.
    1. Khan AN, Gregorie CJ, Tomasi TB. Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother. 2008;57(5):647–654. doi: 10.1007/s00262-007-0402-4.
    1. Woods DM, Woan K, Cheng F, Wang H, Perez-Villarroel P, Lee C, Lienlaf M, Atadja P, Seto E, Weber J, Sotomayor EM, Villagra A. The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res. 2013;23(5):341–348. doi: 10.1097/CMR.0b013e328364c0ed.
    1. Zheng H, Zhao W, Yan C, Watson CC, Massengill M, Xie M, Massengill C, Noyes DR, Martinez GV, Afzal R, Chen Z, Ren X, Antonia SJ, Haura EB, Ruffell B, Beg AA. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2016;22(16):4119–4132. doi: 10.1158/1078-0432.CCR-15-2584.
    1. Wang X, Waschke BC, Woolaver RA, Chen Z, Zhang G, Piscopio AD, Liu X, Wang JH. Histone Deacetylase inhibition sensitizes PD1 blockade-resistant B-cell lymphomas. Cancer Immunol Res. 2019;7(8):1318–1331. doi: 10.1158/2326-6066.CIR-18-0875.

Source: PubMed

3
Abonneren