The Effect of Endurance and Endurance-Strength Training on Bone Health and Body Composition in Centrally Obese Women-A Randomised Pilot Trial

Małgorzata Jamka, Sylwia E Piotrowska-Brudnicka, Joanna Karolkiewicz, Damian Skrypnik, Paweł Bogdański, Judyta Cielecka-Piontek, Gulnara Sultanova, Jarosław Walkowiak, Edyta Mądry, Małgorzata Jamka, Sylwia E Piotrowska-Brudnicka, Joanna Karolkiewicz, Damian Skrypnik, Paweł Bogdański, Judyta Cielecka-Piontek, Gulnara Sultanova, Jarosław Walkowiak, Edyta Mądry

Abstract

There is no consensus exercise programme to reduce body weight and improve body composition simultaneously preventing bone loss or stimulating osteogenesis. This pilot study compared the effect of endurance and endurance-strength training on body composition and bone metabolism in centrally obese women. Recruited subjects were randomly assigned to three-month endurance (n = 22) or endurance-strength training (n = 22). Body composition, bone mineral density (BMD) and content (BMC) were assessed before and after the intervention and markers of bone formation and resorption were measured. Both training significantly decreased fat mass; however, endurance-strength training had a more favourable effect on lean mass for the gynoid area (p = 0.0211) and legs (p = 0.0381). Endurance training significantly decreased total body BMC and BMD (p = 0.0440 and p = 0.0300), whereas endurance-strength training only reduced BMD (p = 0.0063). Changes in densitometric parameters did not differ between the groups but endurance training increased osteocalcin levels (p = 0.04845), while endurance-strength training increased tartrate-resistant acid phosphatase 5b concentrations (p = 0.00145). In conclusion, both training programmes were effective in the reduction of fat mass simultaneously negatively affecting bone health. However, endurance-strength training seemed to be more effective in increasing lean mass. The study protocol was registered in the ClinicalTrials.gov database under the number NCT03444207, date of registration: 23 February 2018 (retrospective registration).

Keywords: body composition; bone mineral content; bone mineral density; densitometry; exercise; obesity.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Study flow chart.

References

    1. World Health Organization Obesity and Overweight. [(accessed on 25 January 2022)]. Available online: .
    1. Abdelaal M., le Roux C.W., Docherty N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017;5:161. doi: 10.21037/atm.2017.03.107.
    1. World Health Organization Body Mass Index-BMI. [(accessed on 16 November 2020)]. Available online: .
    1. American Council on Exercise Percent Body Fat Calculator. [(accessed on 16 November 2020)]. Available online:
    1. World Health Organization . Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. World Health Organization; Genewa, Switzerland: 2008.
    1. Xue R., Li Q., Geng Y., Wang H., Wang F., Zhang S. Abdominal obesity and risk of CVD: A dose–response meta-analysis of thirty-one prospective studies. Br. J. Nutr. 2021;126:1420–1430. doi: 10.1017/S0007114521000064.
    1. Zhang C., Rexrode K.M., van Dam R.M., Li T.Y., Hu F.B. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: Sixteen years of follow-up in US women. Circulation. 2008;117:1658–1667. doi: 10.1161/CIRCULATIONAHA.107.739714.
    1. Kim M.H., Song S.W., Kim K.S. Abdominal obesity is associated with lower bone mineral density in non-weight-bearing site in Korean men. Am. J. Mens. Health. 2019;13:1557988318813499. doi: 10.1177/1557988318813499.
    1. Sharma D.K., Anderson P.H., Morris H.A., Clifton P.M. Visceral fat is a negative determinant of bone health in obese postmenopausal women. Int. J. Environ. Res. Public Health. 2020;17:3996. doi: 10.3390/ijerph17113996.
    1. Tariq S., Tariq S., Lone K. Relationship of anthropometric measures with bone mineral density in postmenopausal non-osteoporotic, osteopenic and osteoporotic women. J. Pak. Med. Assoc. 2017;67:504–590.
    1. Centers for Disease Control and Prevention Benefits of Physical Activity. [(accessed on 8 October 2020)]; Available online: .
    1. Benedetti M.G., Furlini G., Zati A., Mauro G.L. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed. Res Int. 2018;2018:4840531. doi: 10.1155/2018/4840531.
    1. Mages M., Shojaa M., Kohl M., von Stengel S., Becker C., Gosch M., Jakob F., Kerschan-Schindl K., Kladny B., Klöckner N., et al. Exercise effects on bone mineral density in men. Nutrients. 2021;13:4244. doi: 10.3390/nu13124244.
    1. Kistler-Fischbacher M., Weeks B.K., Beck B.R. The effect of exercise intensity on bone in postmenopausal women (part 1): A systematic review. Bone. 2021;143:115696. doi: 10.1016/j.bone.2020.115696.
    1. Kistler-Fischbacher M., Weeks B.K., Beck B.R. The effect of exercise intensity on bone in postmenopausal women (part 2): A meta-analysis. Bone. 2021;143:115697. doi: 10.1016/j.bone.2020.115697.
    1. Mesinovic J., Jansons P., Zengin A., de Courten B., Rodriguez A.J., Daly R.M., Ebeling P.R., Scott D. Exercise attenuates bone mineral density loss during diet-induced weight loss in adults with overweight and obesity: A systematic review and meta-analysis. J. Sport Health Sci. 2021;10:550–559. doi: 10.1016/j.jshs.2021.05.001.
    1. Xu J., Lombardi G., Jiao W., Banfi G. Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: An overview of systematic reviews and meta-analyses. Sports Med. 2016;46:1165–1182. doi: 10.1007/s40279-016-0494-0.
    1. Zouhal H., Berro A.J., Kazwini S., Saeidi A., Jayavel A., Clark C.C.T., Hackney A.C., VanDusseldorp T.A., Ben Abderrahman A., El Hage R. Effects of exercise training on bone health parameters in individuals with obesity: A systematic review and meta-analysis. Front. Physiol. 2022;12:807110. doi: 10.3389/fphys.2021.807110.
    1. Pinheiro M.B., Oliveira J., Bauman A., Fairhall N., Kwok W., Sherrington C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int. J. Behav. Nutr. Phys. Act. 2020;17:150. doi: 10.1186/s12966-020-01040-4.
    1. Bull F.C., Al-Ansari S.S., Biddle S., Borodulin K., Buman M.P., Cardon G., Carty C., Chaput J.P., Chastin S., Chou R., et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020;54:1451–1462. doi: 10.1136/bjsports-2020-102955.
    1. American College of Sport Medicine . ACSM’s Guidelines for Exercise Testing and Prescription. 11th ed. Wolters Kluwer; Baltimore, MD, USA: 2021.
    1. Moher D., Hopewell S., Schulz K.F., Montori V., Gøtzsche P.C., Devereaux P.J., Elbourne D., Egger M., Altman D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Jamka M., Bogdański P., Krzyżanowska-Jankowska P., Miśkiewicz-Chotnicka A., Karolkiewicz J., Duś-Żuchowska M., Mądry R., Lisowska A., Gotz-Więckowska A., Iskakova S., et al. Endurance training depletes antioxidant system but does not affect endothelial functions in women with abdominal obesity: A randomized trial with a comparison to endurance-strength training. J. Clin. Med. 2021;10:1639. doi: 10.3390/jcm10081639.
    1. Jamka M., Mądry E., Bogdański P., Kryściak J., Mądry R., Lisowska A., Ismagulova E., Gotz-Więckowska A., Chudzicka-Strugała I., Amanzholkyzy A., et al. The effect of endurance and endurance-strength training on bone mineral density and content in abdominally obese postmenopausal women: A randomized trial. Healthcare. 2021;9:1074. doi: 10.3390/healthcare9081074.
    1. Jamka M., Mądry E., Krzyżanowska-Jankowska P., Skrypnik D., Szulińska M., Mądry R., Lisowska A., Batyrova G., Duś-Żuchowska M., Gotz-Więckowska A., et al. The effect of endurance and endurance-strength training on body composition and cardiometabolic markers in abdominally obese women: A randomised trial. Sci. Rep. 2021;1:12339. doi: 10.1038/s41598-021-90526-7.
    1. Jamka M., Bogdański P., Krzyżanowska-Jankowska P., Karolkiewicz J., Mądry R., Lisowska A., Walkowiak J., Mądry E. Comparison of the effects of endurance and endurance-strength training programmes on the level of endothelial dysfunction in women with abdominal obesity: Study protocol for a randomised controlled trial. J. Med. Sci. 2020;88:266–272. doi: 10.20883/medical.400.
    1. Skrypnik D., Ratajczak M., Karolkiewicz J., Madry E., Pupek-Musialik D., Hansdorfer-Korzon R., Walkowiak J., Jakubowski H., Bogdański P. Effects of endurance and endurance-strength exercise on biochemical parameters of liver function in women with abdominal obesity. Biomed. Pharmacother. 2016;80:1–7. doi: 10.1016/j.biopha.2016.02.017.
    1. Skrypnik D., Bogdański P., Mądry E., Karolkiewicz J., Ratajczak M., Kryściak J., Pupek-Musialik D., Walkowiak J. Effects of endurance and endurance strength training on body composition and physical capacity in women with abdominal obesity. Obes. Facts. 2015;8:175–187. doi: 10.1159/000431002.
    1. Szulinska M., Skrypnik D., Ratajczak M., Karolkiewicz J., Madry E., Musialik K., Walkowiak J., Jakubowski H., Bogdański P. Effects of endurance and endurance-strength exercise on renal function in abdominally obese women with renal hyperfiltration: A prospective randomized trial. Biomed. Environ. Sci. 2016;29:706–712.
    1. Ratajczak M., Skrypnik D., Bogdański P., Mądry E., Walkowiak J., Szulińska M., Maciaszek J., Kręgielska-Narożna M., Karolkiewicz J. Effects of endurance and endurance-strength training on endothelial function in women with obesity: A randomized trial. Int. J. Environ. Res. Public Health. 2019;16:429. doi: 10.3390/ijerph16214291.
    1. Mancia G., Laurent S., Agabiti-Rosei E., Ambrosioni E., Burnier M., Caulfield M.J., Cifkova R., Clément D., Coca A., Dominiczak A., et al. Reappraisal of European guidelines on hypertension management: A European Society of Hypertension Task Force document. Blood Press. 2009;18:308–347. doi: 10.3109/08037050903450468.
    1. Brzycki M. Strength testing—Predicting a one-rep max from reps-to-fatigue. J. Phys. Educ. Recreat Dance. 1993;64:88–90. doi: 10.1080/07303084.1993.10606684.
    1. Amanat S., Sinaei E., Panji M., MohammadporHodki R., Bagheri-Hosseinabadi Z., Asadimehr H., Fararouei M., Dianatinasab A. A randomized controlled trial on the effects of 12 weeks of aerobic, resistance, and combined exercises training on the serum levels of nesfatin-1, irisin-1 and HOMA-IR. Front. Physiol. 2020;16:562895. doi: 10.3389/fphys.2020.562895.
    1. Dianatinasab A., Koroni R., Bahramian M., Bagheri-Hosseinabadi Z., Vaismoradi M., Fararouei M., Amanat S. The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. J. Exerc. Sci. Fit. 2020;18:168–176. doi: 10.1016/j.jesf.2020.06.004.
    1. Nikseresht M., Agha-Alinejad H., Azarbayjani M.A., Ebrahim K. Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. J. Strength Cond. Res. 2014;28:2560–2568. doi: 10.1519/JSC.0000000000000441.
    1. Mohammad Rahimi G.R., Bijeh N., Rashidlamir A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight adiponectin in adults with metabolic syndrome. Exp. Physiol. 2020;105:449–459. doi: 10.1113/EP088036.
    1. Villareal D.T., Aguirre L., Gurney A.B., Waters D.L., Sinacore D.R., Colombo E., Armamento-Villareal R., Qualls C. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 2017;376:1943–1955. doi: 10.1056/NEJMoa1616338.
    1. Rossi F.E., Fortaleza A.C.S., Neves L.M., Buonani C., Picolo M.R., Diniz T.A., Kalva-Filho C.A., Papoti M., Lira F.S., Freitas Junior I.F. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. J. Strength Cond. Res. 2016;30:226–234. doi: 10.1519/JSC.0000000000001020.
    1. Stensvold D., Tjønna A.E., Skaug E.A., Aspenes S., Stølen T., Wisløff U., Slørdahl S.A. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J. Appl. Physiol. 2010;108:804–810. doi: 10.1152/japplphysiol.00996.2009.
    1. Campos R.M., Túlio de Mello M., Tock L., Silva P.L., Masquio D.L., de Piano A., Sanches P.L., Carnier J., Corgosinho F.C., Foschini D., et al. Aerobic plus resistance training improves bone metabolism and inflammation in obese adolescents. J. Strength Cond. Res. 2014;28:758–766. doi: 10.1519/JSC.0b013e3182a996df.
    1. Santos L., Elliott-Sale K.J., Sale C. Exercise and bone health across the lifespan. Biogerontology. 2017;18:931–946. doi: 10.1007/s10522-017-9732-6.
    1. Arazi H., Eghbali E. Effects of different types of physical training on bone mineral density in men and women. J. Osteopor. Phys. Act. 2017;5:207. doi: 10.4172/2329-9509.1000207.
    1. Clarke B.L., Khosla S. Physiology of bone loss. Radiol. Clin. N. Am. 2010;48:483–495. doi: 10.1016/j.rcl.2010.02.014.
    1. Lo J.C., Burnett-Bowie S.A.M., Finkelstein J.S. Bone and the perimenopause. Obstet. Gynecol. Clin. N. Am. 2011;38:503–517. doi: 10.1016/j.ogc.2011.07.001.
    1. Shariati-Sarabi Z., Rezaie H.E., Milani N., Rezaie F.E., Rezaie A.E. Evaluation of bone mineral density in perimenopausal period. Arch. Bone Jt. Surg. 2018;6:57–62.
    1. Rinonapoli G., Pace V., Ruggiero C., Ceccarini P., Bisaccia M., Meccariello L., Caraffa A. Obesity and bone: A complex relationship. Int. J. Mol. Sci. 2021;22:13662. doi: 10.3390/ijms222413662.
    1. Von Thun N.L., Sukumar D., Heymsfield S.B., Shapses S.A. Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women. Menopause. 2014;21:501–508. doi: 10.1097/GME.0b013e3182a76fd5.
    1. Hunter G.R., Plaisance E.P., Fisher G. Weight loss and bone mineral density. Curr. Opin. Endocrinol. Diabetes Obes. 2014;21:358–362. doi: 10.1097/MED.0000000000000087.
    1. Shapses S.A., Sukumar D. Bone metabolism in obesity and weight loss. Annu. Rev. Nutr. 2012;32:287–309. doi: 10.1146/annurev.nutr.012809.104655.
    1. Hu C., Qin Q.-H., Hu C., Qin Q.-H. Bone remodeling and biological effects of mechanical stimulus. AIMS Bioeng. 2020;7:12–28. doi: 10.3934/bioeng.2020002.
    1. Avin K.G., Bloomfield S.A., Gross T.S., Warden S.J. Biomechanical aspects of the muscle-bone interaction. Curr. Osteoporos. Rep. 2015;13:1–8. doi: 10.1007/s11914-014-0244-x.
    1. Locquet M., Beaudart C., Durieux N., Reginster J.Y., Bruyère O. Relationship between the changes over time of bone mass and muscle health in children and adults: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2019;20:429. doi: 10.1186/s12891-019-2752-4.
    1. Villareal D.T., Fontana L., Weiss E.P., Racette S.B., Steger-May K., Schechtman K.B., Klein S., Holloszy J.O. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch. Intern. Med. 2006;166:2502–2510. doi: 10.1001/archinte.166.22.2502.
    1. Villareal D.T., Shah K., Banks M.R., Sinacore D.R., Klein S. Effect of weight loss and exercise therapy on bone metabolism and mass in obese older adults: A one-year randomized controlled trial. J. Clin. Endocrinol. Metab. 2008;93:2181–2187. doi: 10.1210/jc.2007-1473.
    1. Nagle K.B., Brooks M.A. A systematic review of bone health in cyclists. Sports Health. 2011;3:235–243. doi: 10.1177/1941738111398857.
    1. Olmedillas H., González-Agüero A., Moreno L.A., Casajus J.A., Vicente-Rodríguez G. Cycling and bone health: A systematic review. BMC Med. 2012;10:168. doi: 10.1186/1741-7015-10-168.
    1. Hong A.R., Kim S.W. Effects of resistance exercise on bone health. Endocrinol. Metab. (Seoul) 2018;33:435–444. doi: 10.3803/EnM.2018.33.4.435.
    1. Kitsuda Y., Wada T., Noma H., Osaki M., Hagino H. Impact of high-load resistance training on bone mineral density in osteoporosis and osteopenia: A meta-analysis. J. Bone Miner. Metab. 2021;39:787–803. doi: 10.1007/s00774-021-01218-1.
    1. Shanb A., Youssef E. The impact of adding weight-bearing exercise versus nonweight bearing programs to the medical treatment of elderly patients with osteoporosis. J. Family Community Med. 2014;21:176–181. doi: 10.4103/2230-8229.142972.
    1. James M.M.S., Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: A meta-analysis. J. Bone Miner. Metab. 2010;28:251–267. doi: 10.1007/s00774-009-0139-6.
    1. Rector R.S., Rogers R., Ruebel M., Hinton P.S. Participation in road cycling vs running is associated with lower bone mineral density in men. Metabolism. 2008;57:226–232. doi: 10.1016/j.metabol.2007.09.005.
    1. Stewart A.D., Hannan J. Total and regional bone density in male runners, cyclists, and controls. Med. Sci. Sports Exerc. 2000;32:1373–1377. doi: 10.1097/00005768-200008000-00003.
    1. Chen Z., Sherk V.D., Sharma-Ghimire P., Bemben M.G., Bemben D.A. Site-specific bone differences and energy status in male competitive runners and road cyclists. J. Clin. Densitom. 2022;25:150–159. doi: 10.1016/j.jocd.2021.11.002.
    1. Turpin N.A., Watier B. Cycling biomechanics and its relationship to performance. Appl. Sci. 2020;10:4112. doi: 10.3390/app10124112.
    1. Nichols J.F., Rauh M.J. Longitudinal changes in bone mineral density in male master cyclists and nonathletes. J. Strength Cond. Res. 2011;25:727–734. doi: 10.1519/JSC.0b013e3181c6a116.
    1. Beshgetoor D., Nichols J.F., Rego I. Effect of training mode and calcium intake on bone mineral density in female master cyclist, runners, and non-athletes. Int. J. Sport Nutr. Exerc. Metab. 2000;10:290–301. doi: 10.1123/ijsnem.10.3.290.
    1. Je C. The impact of duration on effectiveness of exercise, the implication for periodization of training and goal setting for individuals who are overfat, a meta-analysis. Biol. Sport. 2016;33:309–333.
    1. Daly R.M., DallaVia J., Fyfe J.J., Nikander R., Kukuljan S. Effects of exercise frequency and training volume on bone changes following a multi-component exercise intervention in middle aged and older men: Secondary analysis of an 18-month randomized controlled trial. Bone. 2021;148:115944. doi: 10.1016/j.bone.2021.115944.
    1. U.S. Department of Health and Human Services . Physical Activity Guidelines for Americans. 2nd ed. Department of Health and Human Services; Washington, DC, USA: 2018.
    1. Eriksen E.F. Normal and pathological remodeling of human trabecular bone: Three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr. Rev. 1986;7:379–408. doi: 10.1210/edrv-7-4-379.
    1. Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012;56:1–54.
    1. Hong L., Liu D., Wu F., Wang M., Cen Y., Ma L. Correlation between bone turnover markers and bone mineral density in patients undergoing long-term anti-osteoporosis treatment: A systematic review and meta-analysis. Appl. Sci. 2020;10:832. doi: 10.3390/app10030832.
    1. Fujimura R., Ashizawa N., Watanabe M., Mukai N., Amagai H., Fukubayashi T., Hayashi K., Tokuyama K., Suzuki M. Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. J. Bone Miner. Res. 1997;12:656–662. doi: 10.1359/jbmr.1997.12.4.656.
    1. Schroeder E.T., Hawkins S.A., Jaque S.V. Musculoskeletal adaptations to 16 weeks of eccentric progressive resistance training in young women. J. Strength Cond. Res. 2004;18:227–235. doi: 10.1519/00124278-200405000-00005.
    1. Woitge H.W., Friedmann B., Suttner S., Farahmand I., Müller M., Schmidt-Gayk H., Baertsch P., Ziegler R., Seibel M.J. Changes in bone turnover induced by aerobic and anaerobic exercise in young males. J. Bone Miner. Res. 1998;13:1797–1804. doi: 10.1359/jbmr.1998.13.12.1797.
    1. Hinton P.S., Rector R.S., Linden M.A., Warner S.O., Dellsperger K.C., Chockalingam A., Whaley-Connell A.T., Liu Y., Thomas T.R. Weight-loss-associated changes in bone mineral density and bone turnover after partial weight regain with or without aerobic exercise in obese women. Eur. J. Clin. Nutr. 2011;66:606–612. doi: 10.1038/ejcn.2011.212.
    1. Rector R.S., Loethen J., Ruebel M., Thomas T.R., Hinton P.S. Serum markers of bone turnover are increased by modest weight loss with or without weight-bearing exercise in overweight premenopausal women. Appl. Physiol. Nutr. Metab. 2009;34:933–941. doi: 10.1139/H09-098.
    1. Cifuentes M., Johnson M.A., Lewis R.D., Heymsfield S.B., Chowdhury H.A., Modlesky C.M., Shapses S.A. Bone turnover and body weight relationships differ in normal-weight compared with heavier postmenopausal women. Osteoporos. 2003;14:116–122. doi: 10.1007/s00198-002-1324-9.
    1. Sheehan K.M., Murphy M.M., Reynolds K., Creedon J.F., White J., Kazel M. The response of a bone resorption marker to marine recruit training. Mil. Med. 2003;168:797–801. doi: 10.1093/milmed/168.10.797.

Source: PubMed

3
Abonneren