The effect of intraoperative goal-directed crystalloid versus colloid administration on perioperative inflammatory markers - a substudy of a randomized controlled trial

Mina Obradovic, Andrea Kurz, Barbara Kabon, Georg Roth, Oliver Kimberger, Oliver Zotti, Ahamed Bayoumi, Christian Reiterer, Anton Stift, Edith Fleischmann, Mina Obradovic, Andrea Kurz, Barbara Kabon, Georg Roth, Oliver Kimberger, Oliver Zotti, Ahamed Bayoumi, Christian Reiterer, Anton Stift, Edith Fleischmann

Abstract

Background: Excessive perioperative fluid administration may result in iatrogenic endothelial dysfunction and tissue edema, transducing inflammatory markers into the bloodstream. Colloids remain longer in the circulation, requiring less volume to reach similar hemodynamic endpoints compared to crystalloids. Thus, we tested the hypothesis that a goal-directed colloid regimen attenuates the inflammatory response compared to a goal-directed crystalloid regime.

Methods: Patients undergoing moderate- to high-risk open abdominal surgery were randomly assigned to goal-directed lactated Ringer's solution (n = 58) or a hydroxyethyl starch 6% 130/0.4 (n = 62) fluid regimen. Our primary outcome was perioperative levels of pro- and anti-inflammatory cytokines. Secondary outcome was perioperative levels of white blood cell count (WBC), C-reactive protein (CRP), procalcitonin (PCT) and lipopolysaccharide-binding protein (LBP). Measurements were performed preoperatively, immediate postoperatively, on postoperative day one, two and four.

Results: The areas under the curve of Interleukin (IL) 6 (p = 0.60), IL 8 (p = 0.46), IL 10 (p = 0.68) and tumor necrosis factor α (p = 0.47) levels did not differ significantly between the groups. WBC, CRP and PCT values were also comparable. LBP, although significantly higher in the crystalloid group, remained in the normal range. Patients assigned to crystalloids received a median (IQR) amount of 3905 mL (2880-5288) of crystalloid. Patients assigned to colloids received 1557 mL (1207-2116) of crystalloid and 1250 mL (750-1938) of colloid.

Conclusion: Cytokine and inflammatory marker levels did not differ between goal-directed crystalloid and colloid administration after moderate to high-risk abdominal surgery.

Trial registration: ClinicalTrials.gov ( NCT00517127 ). Registered 16th August 2007.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT 2010 Patient flow chart
Fig. 2
Fig. 2
a-d: Pro- and anti-inflammatory cytokines IL 6, IL 8, IL 10 and TNF α over time. 2 A: IL 6, 2 B: IL 8, 2 C: IL 10 and 2 D: TNF α. Data are presented as medians (IQR). Abbreviations: IL – interleukin, TNF α – tumor necrosis factor alpha, POD – postoperative day
Fig. 3
Fig. 3
a-d: Inflammatory markers WBC, CRP, PCT and LBP over time. a: WBC, b: CRP, c: PCT and d: LBP. Data are presented as medians (IQR). Abbreviations: WBC – white blood cells, CRP – C-reactive protein, PCT – procalcitonin, LBP – lipopolysaccharide-binding protein, POD – postoperative day. ★ represents significant difference in LBP in the immediate postoperative period between the crystalloid and the colloid group (P = 0.38)

References

    1. Brandstrup B, Tonnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–648.
    1. Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. New Engl J Med. 2018;378(24):2263–2274. doi: 10.1056/NEJMoa1801601.
    1. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109(4):723–740. doi: 10.1097/ALN.0b013e3181863117.
    1. Lowell JA, Schifferdecker C, Driscoll DF, Benotti PN, Bistrian BR. Postoperative fluid overload: not a benign problem. Crit Care Med. 1990;18(7):728–733. doi: 10.1097/00003246-199007000-00010.
    1. Sun Y, Chai F, Pan C, Romeiser JL, Gan TJ. Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery-a systematic review and meta-analysis of randomized controlled trials. Critical Care. 2017;21(1):141. doi: 10.1186/s13054-017-1728-8.
    1. Calvo-Vecino JM, Ripolles-Melchor J, Mythen MG, et al. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial) Br J Anaesth. 2018;120(4):734–744. doi: 10.1016/j.bja.2017.12.018.
    1. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006;93(9):1069–1076. doi: 10.1002/bjs.5454.
    1. Kimberger O, Arnberger M, Brandt S, et al. Goal-directed colloid administration improves the microcirculation of healthy and perianastomotic colon. Anesthesiology. 2009;110(3):496–504. doi: 10.1097/ALN.0b013e31819841f6.
    1. Kolarova H, Ambruzova B, Svihalkova Sindlerova L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediat Inflamm. 2014;2014:694312. doi: 10.1155/2014/694312.
    1. Rettig TC, Verwijmeren L, Dijkstra IM, Boerma D, van de Garde EM, Noordzij PG. Postoperative Interleukin-6 level and early detection of complications after elective major abdominal surgery. Ann Surg. 2016;263(6):1207–1212. doi: 10.1097/SLA.0000000000001342.
    1. Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–826. doi: 10.1097/00000542-200210000-00012.
    1. Jacob M, Chappell D, Rehm M. Clinical update: perioperative fluid management. Lancet. 2007;369(9578):1984–1986. doi: 10.1016/S0140-6736(07)60926-X.
    1. Feldheiser A, Pavlova V, Bonomo T, et al. Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm. Br J Anaesth. 2013;110(2):231–240. doi: 10.1093/bja/aes377.
    1. Orbegozo Cortes D, Gamarano Barros T, Njimi H, Vincent JL. Crystalloids versus colloids: exploring differences in fluid requirements by systematic review and meta-regression. Anesth Analg. 2015;120(2):389–402. doi: 10.1213/ANE.0000000000000564.
    1. Kabon B, Sessler DI, Kurz A, et al. Effect of Intraoperative Goal-directed Balanced Crystalloid versus Colloid Administration on Major Postoperative Morbidity: A Randomized Trial. Anesthesiology. 2019;130(5):728–44.
    1. Robinson JD, Lupkiewicz SM, Palenik L, Lopez LM, Ariet M. Determination of ideal body weight for drug dosage calculations. Am J Hosp Pharm. 1983;40(6):1016–1019.
    1. Steppan J, Hofer S, Funke B, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165(1):136–141. doi: 10.1016/j.jss.2009.04.034.
    1. Wilmore DW. From Cuthbertson to fast-track surgery: 70 years of progress in reducing stress in surgical patients. Ann Surg. 2002;236(5):643–648. doi: 10.1097/00000658-200211000-00015.
    1. Desborough JP. The stress response to trauma and surgery. Br J Anaesth. 2000;85(1):109–117. doi: 10.1093/bja/85.1.109.
    1. Veenhof AA, Sietses C, von Blomberg BM, et al. The surgical stress response and postoperative immune function after laparoscopic or conventional total mesorectal excision in rectal cancer: a randomized trial. Int J Color Dis. 2011;26(1):53–59. doi: 10.1007/s00384-010-1056-9.
    1. Gilliland HE, Armstrong MA, Carabine U, McMurray TJ. The choice of anesthetic maintenance technique influences the antiinflammatory cytokine response to abdominal surgery. Anesth Analg. 1997;85(6):1394–1398. doi: 10.1213/00000539-199712000-00039.
    1. Wichmann MW, Huttl TP, Winter H, et al. Immunological effects of laparoscopic vs open colorectal surgery: a prospective clinical study. Arch Surg. 2005;140(7):692–697. doi: 10.1001/archsurg.140.7.692.
    1. Watt DG, Horgan PG, McMillan DC. Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: a systematic review. Surgery. 2015;157(2):362–380. doi: 10.1016/j.surg.2014.09.009.
    1. Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119(3):624–629. doi: 10.1213/ANE.0000000000000263.
    1. Baigrie RJ, Lamont PM, Whiting S, Morris PJ. Portal endotoxin and cytokine responses during abdominal aortic surgery. Am J Surg. 1993;166(3):248–251. doi: 10.1016/S0002-9610(05)80967-5.
    1. Yates DR, Davies SJ, Milner HE, Wilson RJ. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014;112(2):281–289. doi: 10.1093/bja/aet307.
    1. Szakmany T, Toth I, Kovacs Z, et al. Effects of volumetric vs. pressure-guided fluid therapy on postoperative inflammatory response: a prospective, randomized clinical trial. Intensive Care Med. 2005;31(5):656–663. doi: 10.1007/s00134-005-2606-4.
    1. Sarbinowski R, Arvidsson S, Tylman M, Oresland T, Bengtsson A. Plasma concentration of procalcitonin and systemic inflammatory response syndrome after colorectal surgery. Acta Anaesthesiol Scand. 2005;49(2):191–196. doi: 10.1111/j.1399-6576.2004.00565.x.
    1. Mokart D, Merlin M, Sannini A, et al. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth. 2005;94(6):767–773. doi: 10.1093/bja/aei143.
    1. Mimoz O, Benoist JF, Edouard AR, Assicot M, Bohuon C, Samii K. Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med. 1998;24(2):185–188. doi: 10.1007/s001340050543.
    1. Villar J, Perez-Mendez L, Espinosa E, et al. Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis. PloS one. 2009;4(8):e6818. doi: 10.1371/journal.pone.0006818.
    1. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69(7):777–784. doi: 10.1111/anae.12661.
    1. Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. Jama. 2014;311(21):2181–2190. doi: 10.1001/jama.2014.5305.

Source: PubMed

3
Abonneren