此页面是自动翻译的,不保证翻译的准确性。请参阅 英文版 对于源文本。

Non-invasive Imaging of GI Inflammation Using Microbubble Contrast Enhanced Ultrasonography

2011年4月25日 更新者:University of Virginia
Inflammatory bowel disease (IBD) is a common chronic inflammatory disorder, but a noninvasive method of assessing disease location, severity, and extent is currently not available. Recently published animal data suggests that using transabdominal ultrasound enhanced with encapsulated gaseous microbubbles may provide a reliable, noninvasive means to detect and quantify areas of intestinal inflammation. This study will evaluate the role of Contrast-enhanced ultrasonography (CEU) for use as a diagnostic tool in patients with IBD. We hypothesize that the severity and extent of chronic intestinal inflammation, as quantified by CEU-derived video intensity scores, will correlate with endoscopically-derived measures of intestinal inflammation as obtained from the Crohn's Disease Endoscopic Inflammatory Index (CDEIS). A total of 40 patients will be enrolled in the study, 30 patients with IBD and 10 patients undergoing colonoscopy for other reasons. Prior to colonoscopy CEU assessment of small and large intestine will be performed to evaluate neoangiogenesis and intestinal blood flow. The correlation between the CEU-derived video intensity score and CDEIS will be assessed using Pearson's correlation coefficient. Subjects may also undergo scoring using the Rutgeerts Score, an endoscopic disease assessment index used to score disease activity in patients with previous ileocolonic resection. Comparing video intensity between IBD and non-IBD subjects will be performed using the Wilcoxon rank sum test, with a secondary aim of establishing preliminary estimates of the sensitivity of the microbubble scoring system.

研究概览

地位

终止

干预/治疗

详细说明

GI inflammation may indicate a number of complications or diseases, one of which is inflammatory bowel disease (IBD), now the second most prevalent inflammatory disorder in the world. Symptoms of the disease include severe abdominal pain, bloody diarrhea, persistent fever, weight loss, and significant malnutrition. There is also an increased risk of colon cancer. If left untreated, the disease is debilitating. Prompt intervention may reduce the amount of immunosuppressive therapy that is required to control the disease, but by the time the patient becomes symptomatic, the inflammatory response is difficult to suppress and much of the damage has already been done. It is therefore important to closely monitor patients with IBD. The location, extent, and severity of the inflammation are of primary consideration for correct diagnosis and treatment. However, no inexpensive and non-invasive procedure exists in protocol for the assessment of these factors of IBD. A non-invasive diagnostic that can detect the onset of inflammation and measure the extent of inflammatory involvement would be a valuable tool for the evaluation of patients with IBD.

Endoscopy, barium contrast X-ray studies, computed tomography (CT), magnetic resonance imaging (MRI), and transabdominal ultrasound (US) are currently the most common procedures used by gastroenterologists. The preferred manner of investigating GI inflammation includes endoscopy with biopsy, as only endoscopy can confirm the presence of inflammation. However, this procedure is highly invasive and limited to areas accessible to the endoscope. There are also limited but real risks associated with endoscopy. In addition, the cost of such a procedure may be prohibitive, or a qualified professional inaccessible, for some patients. Barium contrast X-ray studies remain the best way to visualize stricture and fistulae in the small intestine, but do not provide insight into the degree and extent of active inflammation. Repeated X-rays in chronic and younger patients also contribute to risk of irradiation. CT and MRI are the gold-standard for imaging extra-intestinal inflammatory disease, but fail in their ability to identify active inflammation. There have recently been many studies attempting to improve these means of assessing GI inflammation.

Transabdominal US presents a non-invasive means of imaging internal organs that imposes no significant health risks or undue discomfort upon the patient. The use of abdominal US for the evaluation of IBD was implemented as early as 1979, where wall thickening of the terminal ileum and cecum, with accompanying inflammatory changes in the mesentery, yielded recognizable patterns in both longitudinal and transverse images.11 These initial ultrasonographic images lacked sufficient resolution to provide a sensitive measure of disease activity, but technological advances in high frequency US have greatly improved resolution over the past twenty years. Still, the location and chronicity of certain conditions may decrease the efficacy of this imaging technique, making endoscopy the preferred method of investigation of GI problems. At present, there are several research groups actively investigating the application of US for the management of IBD. The combined results of these studies, in addition to the relatively wide availability, low cost, and easy use of US equipment, support the rationale for developing US into a useful tool for the evaluation of IBD.

Contrast-enhanced ultrasonography (CEU) is the main strategy for improving US quality. One contrast agent that has been studied in the imaging of inflammation, but which has not yet been human-tested for improvement of US quality in inflammation due to IBD, is microbubbles (MB). MB contrast agents are FDA-approved, and are becoming a common clinical tool for the enhancement of US imaging of cardiovascular hemodynamics around the world. Unlike tissue signal, which is produced by US reflection, the strong signal generated by MB is produced by radial oscillation of the MB in the acoustic field. Current MB used for perfusion imaging have lipid or albumin shells and contain high-molecular weight gases (perfluorocarbons, sulfur hexafluoride), which contribute to their high intravascular stability by preventing outward diffusion of gas. MB are generally 2-4µm in size - smaller than average capillary dimension - and passes unimpeded through the microcirculation. They are also hemodynamically inert, and behave similar to red blood cells in vivo. In animal models the acoustic properties of activated Definity® (Perflutren Lipid Microsphere) injectable suspension, were established at or below a mechanical index of 0.7 (1.8 MHz frequency). In clinical trials, the majority of the patients were imaged at or below a mechanical index of .08.

There are two ways that microbubbles might contribute to a strong signal in areas of inflammation in the small intestine or colon. The first is directly through neoangiogenesis and the increase in blood flow to the site. Defined as the growth of new blood vessels, neoangiogenesis is important to the pathogenesis of both Crohn's disease and ulcerative colitis. An expanded microvascular bed in the mucosa and submucosa of IBD patients with active inflammation has been confirmed, and is consistent with the high levels of integrins characteristic for proliferating endothelium (e.g. IL-8, bFGF, and VEGF) found in the microvessels of tissue affected by IBD. The hope is that the increased blood flow in actively inflamed IBD will be correlated with a stronger US signal from the increased concentration of MB flowing through the site.

The second way microbubble CEU may be effective at identifying active inflammation is an indirect effect of new microvasculature. Neoangiogenesis is thought to contribute to pathogenesis by fostering the recruitment and activation of an increased number of leukocyte into the inflamed mucosa. It has been observed that both albumin and lipid shell MB used for echocardiographic studies are phagocytosed intact by activated leukocytes, some of which are adherent to the inflamed endothelium of small intestine or colon. These phagocytosed MB retain a percentage of their acoustic properties, enabling US to image inflammation non-invasively in an in vivo setting. Incorporation of specific lipid moieties into the microbubble shell increases retention and phagocytosis by activated leukocytes.

An investigation of the efficacy of microbubble contrast agents in imaging GI inflammation is the first step towards such targeted imaging and tissue-targeted therapy.

研究类型

介入性

注册 (实际的)

10

阶段

  • 不适用

联系人和位置

本节提供了进行研究的人员的详细联系信息,以及有关进行该研究的地点的信息。

学习地点

    • Virginia
      • Charlottesville、Virginia、美国、22908
        • University of Virginia

参与标准

研究人员寻找符合特定描述的人,称为资格标准。这些标准的一些例子是一个人的一般健康状况或先前的治疗。

资格标准

适合学习的年龄

18年 及以上 (成人、年长者)

接受健康志愿者

有资格学习的性别

全部

描述

Inclusion Criteria:

  • Patients with inflammatory bowel disease (IBD), scheduled for diagnostic colonoscopy or
  • Patients scheduled for diagnostic colonoscopy for other indications other than IBD (e.g. screening, family history of colon cancer).

Exclusion Criteria:

  • Ineligibility for colonoscopy
  • For control patients: a personal history of IBD or clinical history suspicious for IBD or other disease associated with intestinal inflammation. To be determined by investigators at the time of screening.
  • Abnormal QT, Tic, or PR intervals during screening ECG
  • Life-threatening ventricular arrhythmias during screening ECG
  • Abnormally low oxygen saturation (<80%)
  • History of the following:
  • An intracardial or intrapulmonary shunt
  • Unstable coronary artery disease
  • Cerebrovascular disease (e.g. stroke or aneurysm)
  • Diagnosed and or current signs or symptoms of severe, progressive or uncontrolled congenital heart failure
  • Diagnosed and/or current signs or symptoms of severe, progressive or uncontrolled emphysema/COPD
  • Diagnosed and/or current signs or symptoms of severe, progressive or uncontrolled pulmonary hypertension (known PA pressures >50mmHg)
  • Uncontrolled high blood pressure (>140/90)
  • Abnormal kidney function (creatinine > 2.0 mg/dl or GFR > 90)
  • Abnormal liver function (Aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase levels greater than 2 times the upper limit of normal.)
  • Known hypersensitivity to octafluoropropane
  • Pregnancy or nursing, confirmed by urine pregnancy test.

学习计划

本节提供研究计划的详细信息,包括研究的设计方式和研究的衡量标准。

研究是如何设计的?

设计细节

  • 主要用途:诊断
  • 分配:非随机化
  • 介入模型:并行分配
  • 屏蔽:单身的

武器和干预

参与者组/臂
干预/治疗
实验性的:1
IBD patients
We will be placing one vial (1.3) of Definity® in 50 mL of preservative-free saline. Our infusions will be initiated at slightly lower than recommended starting rate (3mL/min) and will be adjusted as necessary to produce optimal enhancement. The rate will not exceed 10 ml/min and we will not give more than 1.3 mL of Definity® in 50mL saline in any 24-hour period.
其他:2
Control subjects
We will be placing one vial (1.3) of Definity® in 50 mL of preservative-free saline. Our infusions will be initiated at slightly lower than recommended starting rate (3mL/min) and will be adjusted as necessary to produce optimal enhancement. The rate will not exceed 10 ml/min and we will not give more than 1.3 mL of Definity® in 50mL saline in any 24-hour period.

研究衡量的是什么?

主要结果指标

结果测量
大体时间
The primary study endpoint is to assess the degree of correlation of the video intensity score from microbubble imaging with an endoscopic scoring system for IBD, the Crohn's Disease Endoscopic Inflammatory Index (CDEIS).
大体时间:Following data collection
Following data collection

次要结果测量

结果测量
大体时间
Secondary endpoint includes comparing the level of video intensity between 30 subjects with inflammatory bowel disease with 10 control patients who are undergoing endoscopic evaluation for non-inflammatory conditions of the large bowel.
大体时间:Following data collection
Following data collection

合作者和调查者

在这里您可以找到参与这项研究的人员和组织。

研究记录日期

这些日期跟踪向 ClinicalTrials.gov 提交研究记录和摘要结果的进度。研究记录和报告的结果由国家医学图书馆 (NLM) 审查,以确保它们在发布到公共网站之前符合特定的质量控制标准。

研究主要日期

学习开始

2006年5月1日

初级完成 (实际的)

2010年12月1日

研究完成 (实际的)

2010年12月1日

研究注册日期

首次提交

2007年12月26日

首先提交符合 QC 标准的

2007年12月27日

首次发布 (估计)

2008年1月11日

研究记录更新

最后更新发布 (估计)

2011年4月26日

上次提交的符合 QC 标准的更新

2011年4月25日

最后验证

2011年4月1日

更多信息

与本研究相关的术语

其他研究编号

  • 11971

此信息直接从 clinicaltrials.gov 网站检索,没有任何更改。如果您有任何更改、删除或更新研究详细信息的请求,请联系 register@clinicaltrials.gov. clinicaltrials.gov 上实施更改,我们的网站上也会自动更新.

Definity的临床试验

3
订阅