Clinical Applications of High-Frequency Oscillations (HFOs)

September 21, 2023 updated by: Jing Xiang. MD, Children's Hospital Medical Center, Cincinnati

Localizing Functional Brain Cortices and Epileptogenic Zones With High Frequency Brain Signals

The objective of this study is to use high-frequency brain signals (HFBS) to localize functional brain areas and to characterize HFBS epilepsy, migraine and other brain disorders. We hope to build the world's first high-frequency MEG/MEG/ECoG/SEEG database for the developing brain. HFBS include high-gamma activation/oscillations, high-frequency oscillations (HFOs), ripples, fast ripples, and very high frequency oscillations (VHFOs) in the brain.

To reach the goals, we have developed several new MEG/EEG methods: (1) accumulated spectrogram; (2) accumulated source imaging; (3)frequency encoded source imaging; (4) multi-frequency analysis; (5)artificial intelligence detection of HFOs; (6) Neural network analysis (Graph Theory); and (7) others (e.g. ICA, virtual sensors).

Study Overview

Status

Enrolling by invitation

Detailed Description

I. PURPOSE OF STUDY The purpose of this study is to go beyond the conventional analyses of brain signals in a narrow frequency band (typically 1-30 Hz) by measuring brain signals from infraslow to very fast (0.01 - 2800 Hz). Specifically, we propose to study physiological HFOs in sensorimotor, auditory, visual and language evoked magnetic fields and to investigate pathological HFOs in epilepsy, migraine and other disorders. This is clinical very important for many reasons.

For example, There are 400,000 to 600,000 patients with refractory epilepsy in the United States. Since those patients' seizures cannot be controlled by any drugs, epilepsy surgery is one potential cure. Accurate identification of ictogenic zones, the brain areas cause seizures, is essential to ensure a favorable surgical outcome. Unfortunately, the existing method, electrocorticography (ECoG), needs to place electrodes upon the brain surface to capture spikes (typically, 14-70 Hz), which is very risky and costly. The present study is to use magnetoencephalography (MEG) and electroencephalography (EEG) to identification of ictogenic zones noninvasively. To reach the goal, we proposed to detect high frequency (70-2,500 Hz) and low frequency (< 14 Hz) brain signals with advanced signal processing methods. Our central hypothesis is that high frequency brain signals will lead to significantly improved rates of seizure freedom as compared with spikes. This hypothesis is based on recent reports that high frequency brain signals are localized to ictogenic zones.

Building on our unique resources and skills, we plan to address four aims. First, we will quantify the spatial concordance between MEG and ECoG signals in both low and high frequency ranges. We hypothesize that Ictogenic zones determined by invasive ECoG can be non-invasively detected and localized by high frequency MEG signals. Second, we will quantify the occurrence concordance between EEG and ECoG signals in both low and high frequency ranges. We hypothesize that epileptic high frequency signals from the ictogenic zones determined by invasive ECoG can also been non-invasively detected by EEG, although the localization of EEG may be significantly inferior to that of MEG. Third, we will determine whether epilepsy surgery based on multi-frequency signals (low frequency brain signals, spikes, and high frequency brain signals), instead of spikes alone, leads to a better seizure outcome. We hypothesize that epilepsy surgery guided by high frequency brain signals detected with MEG/EEG will significantly improve surgical outcomes. Fourth, we will determine whether multi-frequency analyses provide more information than single frequency analysis for estimating epileptogenic zones for pre-surgical ECoG electrode implantation. We hypothesize that covering all brain areas generating low to high frequency epileptic activity is the prerequisite to localize multiple ictogenic zones for favorable post-surgical outcomes. To yield definitive results, we propose a multi-center study to determine if high frequency brain signals are new biomarkers for significantly improve epilepsy surgery outcomes. According to our pilot data that localization of epileptogenic zones with MEG high frequency signals can increase about 30-40% post-operative seizure freedom, the proposed study should result in millions of intractable epilepsy patients being seizure free. This study also lays a foundation for using low and high frequency brain signals as new biomarkers for diagnosis and treatment of many other disorders (e.g. migraine, autism).

Study Type

Observational

Enrollment (Estimated)

420

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

6 years to 18 years (Child, Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Sampling Method

Probability Sample

Study Population

Since this study focuses on normal MEG data, only normal subjects will be studied. Since women, girls, and minorities are included in the population to whom recruiting materials are directed, we anticipate that subject selection will be equitable.

Description

Inclusion Criteria:

  • Healthy and cooperative
  • Ages: from 1 day to 69 years (male or female)
  • Normal hearing and vision
  • Normal hand movement
  • No history for neurological or psychiatric disease
  • No family history for genetic neurological or psychiatric diseases.
  • No metal implants such as pacemaker, neuron-stimulator, cochlear device, etc.

Exclusion Criteria:

  • If you are taking any medications for depression, neurologic, or psychiatric condition
  • If you do not feel well, have epilepsy or other brain disorders
  • If you have had a recent concussion or head injury
  • If you have any metal, such as dental braces, in your body that would cause "magnetic noise", you may not be able to be in this study. If you would like, we can do a simple, quick "magnetic noise screening" in the MEG Center, which can tell us whether you can be in the study.
  • If you have any electrical or metal implants such as pacemakers, neuro-stimulators, or orthopedic pins or plates. The research nurse will discuss all exclusions with you in further detail before the magnetic resonance imaging (MRI) scan.
  • If you could not pass the pre-experimental screening

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Observational Models: Other
  • Time Perspectives: Prospective

Cohorts and Interventions

Group / Cohort
Pediatric Patients and Healthy Children
Healthy children without dental works. Pediatric patients with epilepsy and migraine (headache).

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
epileptic foci
Time Frame: one year
Accuracy of localization of epileptic foci
one year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Collaborators

Investigators

  • Study Director: Jing Xiang, Ph.D M.D., Children's Hospital Medical Center, Cincinnati

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Helpful Links

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

November 1, 2000

Primary Completion (Estimated)

August 1, 2026

Study Completion (Estimated)

August 1, 2026

Study Registration Dates

First Submitted

June 14, 2007

First Submitted That Met QC Criteria

January 24, 2008

First Posted (Estimated)

January 25, 2008

Study Record Updates

Last Update Posted (Actual)

September 25, 2023

Last Update Submitted That Met QC Criteria

September 21, 2023

Last Verified

September 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

UNDECIDED

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Epilepsy

3
Subscribe