Automated Extracranial Internal Carotid Artery Ultrasound Sensor for Traumatic Brain Injury

August 14, 2019 updated by: Cindy Hsu, University of Michigan

Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, resulting in 2.5 million emergency department visits, 280,000 hospitalizations, >50,000 deaths, and more than $60 billion in economic cost. TBI also affects >30,000 military personnel annually and almost 8% of veterans who received care between 2001 and 2011. Post-traumatic neurologic outcome depends on the severity of initial injuries and the extent of secondary cerebral damage. Ischemia is the most common and devastating secondary insult. Ischemic brain damage has been identified histologically in ~90% of patients who died following closed head injury, and several studies have associated low cerebral blood flow (CBF) with poor outcome. Specifically, CBF of less than 200 ml/min has been shown to be the critical lower threshold for survival in neurointensive care patients. In addition to intracranial hypertension and cerebral edema, systemic hypotension and reduced cardiac output contribute substantially to posttraumatic cerebral ischemia. Additionally, the carotid artery is the most common site of blunt cerebral vascular injury (BCVI), which may further compromise CBF and cause subsequent death or debilitating stroke. Specifically, high grade internal carotid arterial (ICA) injuries are associated with the highest mortality and stroke rate.

The investigators' goal is to develop of a wearable noninvasive, continuous, automated ultrasound sensor to accurately measure extracranial ICA flow volume. In doing so, the investigators aim to enable early detection of CBF compromise, thereby preventing secondary ischemic injuries in TBI patients. To achieve this goal, the investigators plan to first build a prototype wearable ICA ultrasound senor with integrated signal processing platform, then test its accuracy in an in vitro system and healthy human subjects.

Study Overview

Study Type

Interventional

Phase

  • Not Applicable

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Healthy volunteers
  • Age 18 or older

Exclusion Criteria:

  • Claustrophobic
  • Hyperventilation or panic disorders
  • Pregnant
  • Have metal implants or cannot pass the MRI screening questions

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Diagnostic
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Healthy subjects
Healthy adult volunteers (age 18 or greater) that are not claustrophobic, do not have hyperventilation or panic disorders, not pregnant, have no metal implants and can pass the MRI screening questions.
The investigators' goal is to develop a wearable noninvasive, continuous, automated ultrasound sensor to accurately measure arterial blood flow volume outside of the head. Ultrasound uses sound waves to create a picture. In doing so, the investigators hope to detect CBF compromise early, preventing secondary injuries in TBI patients.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Internal carotid artery blood flow
Time Frame: 5 minutes before ultrasound or MRI measurement until 15 minutes after the measurement
The investigators will measure volume of blood flow through the extracranial internal carotid artery using the ultrasound sensor and MRI
5 minutes before ultrasound or MRI measurement until 15 minutes after the measurement

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
End tidal CO2 level
Time Frame: 5 minutes before ultrasound or MRI measurement until 15 minutes after the measurement
End tidal carbon dioxide level during normal, hypoventilation, and hyperventilation
5 minutes before ultrasound or MRI measurement until 15 minutes after the measurement

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

January 1, 2019

Primary Completion (Actual)

June 30, 2019

Study Completion (Actual)

June 30, 2019

Study Registration Dates

First Submitted

March 20, 2018

First Submitted That Met QC Criteria

March 27, 2018

First Posted (Actual)

March 29, 2018

Study Record Updates

Last Update Posted (Actual)

August 19, 2019

Last Update Submitted That Met QC Criteria

August 14, 2019

Last Verified

August 1, 2019

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

No

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Traumatic Brain Injury

Clinical Trials on Automated extracranial internal carotid artery ultrasound sensor

3
Subscribe