EC50 of Dexmedetomidine in Deep Brain Stimulation Implantation of Patients With Parkinson's Disease

June 16, 2022 updated by: Ruquan Han, Beijing Tiantan Hospital

Median Effective Concentration (EC50) of Dexmedetomidine in Deep Brain Stimulation Implantation of Patients With Parkinson's Disease

Dexmedetomidine (DEX) sedation is widely used in deep brain stimulation implantation (DBSI) of patients With Parkinson's disease. However, intraoperative application of DEX may affect the discharge activity of deep brain nuclei and reduce the discharge frequency of Subthalamic nucleus (STN) neurons. At present, there is still a lack of prospective intervention research to explore the optimal dose that does not affect MER mapping in patients with Parkinson's disease. The present study uses the Dixon and Massey up-and-down method to analyze the EC50 of DEX in patients with PD undergoing STN-DBS sedation, to clarify the balance meets the sufficient comfort of patients without affecting the accurate target of MER and the optimal dosage of DEX for boundary recognition.

Study Overview

Status

Recruiting

Intervention / Treatment

Detailed Description

Deep brain stimulation (DBS) is an effective treatment to improve the motor symptoms of Parkinson's disease (PD). Subthalamic nucleus (STN) is one of the most commonly used targets in the treatment of PD-DBS. The accuracy of the final implantation position of deep brain electrodes is the key to the success of surgery.

Sedation-Awake-Sedation anesthesia is widely used in DBS. Dexmedetomidine (DEX) mainly acts on the central locus coeruleus nucleus and spinal cord α receptor, which has sedative and analgesic effect and little respiratory inhibition. DEX can produce natural non eye movement sleep that is conducive to the recovery of the body. Within a certain dose range, patients are easy to wake up and have the characteristics of conscious sedation. Patients can make corresponding actions according to the instructions of neurosurgeons and cooperate with doctors to complete the operation. Its sedative safety has been confirmed.

However, intraoperative application of DEX may delay the recovery of cognitive function, affect the discharge activity of deep brain nuclei and reduce the discharge frequency of STN neurons, even after stopping the use of sedatives. The result may be related to the residual effect of sedatives. DEX can reduce the activity of STN neurons in a dose-dependent manner. A smaller dose of DEX may not meet the effects of surgical sedation and analgesia, and the effect of high concentration is better than that of low concentration. Some existing studies have recommended a reasonable dose range of DEX for DBS, but these studies have a small number of research populations, and of great heterogeneity in target selection, anesthetic dose and strategy. At present, there is still a lack of prospective intervention research to explore the optimal dose that the application of DEX sedation does not affect MER mapping in patients with Parkinson's disease. The present study uses the up and down method to analyze the EC50 and EC95 of DEX in patients with PD undergoing STN-DBS sedation, to clarify the balance meets the sufficient comfort of patients without affecting the accurate target of MER and the optimal dosage of DEX for boundary recognition.

Study Type

Interventional

Enrollment (Anticipated)

40

Phase

  • Phase 4

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

50 years to 80 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  1. 50-80 years old, ASA grade II-III;
  2. Bilateral STN-DBS of patients with Parkinson's disease;
  3. Signed informed consent.

Exclusion Criteria:

  1. Obstructive sleep apnea;
  2. BMI > 30kg/m2;
  3. Estimated difficult airway;
  4. Severe preoperative anxiety;
  5. Serious dysfunction of important organs such as heart, liver and kidney;
  6. previous allergy to dexmedetomidine;
  7. Pregnant or lactating women.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Other
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: DEX for STN-DBS
The loading dose of DEX (0.5 µg/kg) is transfused intravenously within 15min.The maintaining concentration of DEX, which is started at 0.3 µg/kg/h in the first patient, is determined by the NRMS in the MER signal of the previous patient according to the up and down sequence. If the NRMS is higher than 2.0, a positive response is defined and the concentration of DEX will be added by 0.05µg/kg/h in the next patient. A negative response is defined as NRMS lower than 2.0, and in such cases the concentration of DEX is reduced by 0.3 µg/kg/h.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
EC50 and the corresponding 95%CI of DEX applied to PD patients undergoing STN-DBS are determined by the up and down method according to the normalized root mean square(NRMS) value of the MER sampled signal.
Time Frame: during MER recording

We use the root mean square (RMS) value of the MER sampled signal recorded by the electrode, measured in volts, as the main parameter for evaluating electrode position. RMS values change with the electrode properties and other external drives related to the operating room; therefore, it is crucial to normalize the RMS to comparable values. Thus, each session's RMS in a trajectory is divided by the mean RMS of the first five stable sessions in the same trajectory. This normalized RMS (NRMS) is found to be a good measure as it reflects the relative change in the total power of the signal, which elevates dramatically entering the STN.

If the NRMS is higher than 2.0, a positive response is defined and the concentration of DEX will be added by 0.05µg/kg/h in the next patient. A negative response is defined as NRMS lower than 2.0, and in such cases the concentration of DEX is reduced by 0.3 µg/kg/h.

during MER recording

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
STN pass length (mm)
Time Frame: during MER recording
For STN identification and length, recordings within the thalamus, zona incerta, STN, and SNr are identified by an experienced neurophysiologist intraoperatively and reclassified independently offline. The STN pass length is determined as the distance from entry to exit of the STN based on the significant, clear increase in baseline unit activity and FR changes unique to STN.
during MER recording

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

May 31, 2022

Primary Completion (Anticipated)

December 31, 2023

Study Completion (Anticipated)

December 31, 2023

Study Registration Dates

First Submitted

May 8, 2022

First Submitted That Met QC Criteria

May 13, 2022

First Posted (Actual)

May 17, 2022

Study Record Updates

Last Update Posted (Actual)

June 21, 2022

Last Update Submitted That Met QC Criteria

June 16, 2022

Last Verified

June 1, 2022

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on PD - Parkinson's Disease

Clinical Trials on Dexmedetomidine

3
Subscribe