Effect of Simvastatin on CF Airway Inflammation

July 31, 2009 updated by: Akron Children's Hospital

Individuals with cystic fibrosis (CF) have persistent infection in the airways, which the body attempts to fight by recruiting immune cells (neutrophils) to the lung. The immune system and neutrophils are unable to completely kill the bacteria, and the response to the infection leads to inflammation (swelling) of the airways and lung damage. Nitric oxide (NO) has anti-bacterial and anti-inflammatory properties in the lung. NO production is decreased in CF patients, and may contribute to the persistent infection and inflammation. Increasing the production of NO in the airways of CF patients may help decrease this inflammation and infection.

Rho GTPases are molecules in the cells that line the airways that decrease the protein that makes nitric oxide (NOS). Rho proteins also increase inflammation in these cells. Rho proteins are increased in CF cells, and may partially explain the low NO and high inflammation seen in CF. Blocking the Rho protein in CF cells increases NOS, which can then produce more NO. The Rho protein can be inhibited with a drug, simvastatin (Zocor®). Simvastatin is used by millions of people to lower their cholesterol, is very safe, has few side-effects and is approved for use in children greater than 10 years of age. We propose that treating CF patients with simvastatin will increase NO produced (exhaled NO), and may decrease airway inflammation.

If simvastatin has these expected effects in CF, it would be another drug that has potential to become a new therapy to fight the debilitating lung damage of the disease.

Study Overview

Status

Completed

Conditions

Detailed Description

Cystic Fibrosis (CF) lung disease is characterized by chronic bacterial infection and excessive inflammation. The airways of patients with CF contain large amounts of neutrophils, neutrophil products, and pro-inflammatory mediators. This inflammatory response may be linked to the loss of CFTR function. It is unknown, however, what signaling mechanisms link a loss of CFTR function to the excessive inflammatory response. Several signaling pathways are dysregulated in CF epithelial cells. Among these is the pathway that leads to the production of nitric oxide (NO). Reduced production of NO, which has important antibacterial and anti-inflammatory effects in the airway, may contribute to the establishment of the chronic bacterial infection and the development of the subsequent overzealous inflammatory response in CF.

NO synthesis in the airway epithelium is regulated by nitric oxide synthase 2 (NOS2). NOS2 expression is negatively regulated by the Rho GTPases, which are over-expressed in CF and may also play a role in the inflammatory dysregulation characteristic of the lung disease. Inhibition of the Rho GTPases with 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoAR) inhibitors, such as simvastatin (Zocor®), increases NOS2 protein expression in CF airway epithelial cells. The statins have also been shown to have potent systemic anti-inflammatory effects, many of which may be pertinent to CF. We propose to test the hypothesis that HMG-CoAR inhibitors, such as simvastatin, have the potential to correct abnormalities in NO production and decrease inflammation in the airways of patients with CF. The following specific aims will be pursued in this application: 1) To determine the effect of simvastatin treatment on exhaled nitric oxide (eNO) concentrations in subjects with CF; 2) To determine the effect of simvastatin treatment on inflammation and NOS2 production in the airway of subjects with CF, as determined by quantitative RT-PCR for IL-6, IL-8, and NOS2 mRNA in nasal epithelial cells; 3) To determine if quantitative RT-PCR measurements on nasal epithelial cells might be used as a surrogate marker of lower airway inflammation by comparing the measures obtained from nasal epithelial scrapes with inflammatory measurements obtained from induced sputum.

This study has the potential to identify a new agent that targets a signaling pathway (Rho GTPase) that appears to be dysregulated in CF, and thus, may exert multiple beneficial effects in the CF airway including increasing airway NO concentrations, decreasing neutrophil influx and reducing production of inflammatory mediators. In addition to evaluating the anti-inflammatory effects of statins in CF, this study presents an opportunity to evaluate alternative outcome measures of CF airway inflammation. The results of this study will provide important information regarding the feasibility of using nasal epithelial sampling as a relatively non-invasive measure of airway inflammation in CF.

Study Type

Interventional

Enrollment (Anticipated)

40

Phase

  • Phase 1

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Ohio
      • Akron, Ohio, United States, 44308
        • Akron Children's Hospital

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

10 years and older (Child, Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Cystic Fibrosis
  • > 9 yrs of age
  • Clinically stable
  • FEV1 > 50% predicted

Exclusion Criteria:

  • Hepatic disease
  • B. cepacia
  • corticosteroids
  • symptomatic allergic rhinitis

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Non-Randomized
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
Specific Aim 1: To determine the effect of simvastatin treatment on exhaled NO, eNO measurements from the Run-in phase will be compared to the Treatment phase.
Time Frame: 1 month
1 month

Secondary Outcome Measures

Outcome Measure
Time Frame
Specific Aim 2: Synthesis of the following markers will be measured in nasal epithelial samples by quantitative PCR.
Time Frame: 1 months
1 months
Specific Aim 3: Cell and differential counts will be obtained in induced sputum as an overall measure of the inflammatory response.Concentrations of neutrophil products (elastase) and cytokines also will be measured in induced sputum.
Time Frame: 1 months
1 months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Nathan C Kraynack, MD, Akron Children's Hospital

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

July 1, 2004

Primary Completion (Actual)

March 1, 2008

Study Completion (Actual)

May 1, 2009

Study Registration Dates

First Submitted

November 16, 2005

First Submitted That Met QC Criteria

November 16, 2005

First Posted (Estimate)

November 18, 2005

Study Record Updates

Last Update Posted (Estimate)

August 3, 2009

Last Update Submitted That Met QC Criteria

July 31, 2009

Last Verified

January 1, 2008

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Cystic Fibrosis

Clinical Trials on Simvastatin treatment for 28 days

3
Subscribe