Plaque Calcium Characterization and Ruptured Plaques

February 20, 2019 updated by: Li Min

In Vivo Atherosclerotic Plaque Calcium Characterization for Predicting Ruptured Plaques

Recently, ultrashort echo time (UTE) MR, which allows detection of the ultrashort T2 components, has been used to image plaque calcification in ex vivo carotid and coronary arteries. The results demonstrated that UTE images are able to identify plaque calcification and enables accurate quantification of calcium volumes. However, gadolinium-based contrast agents during in vivo CMR could not be performed in these ex vivo study. Agnese et al. believed that calcifications with 18F-NaF PET uptake might be considered to represent dormant areas where on-going mineralization, which is a key sign to identify and localise ruptured and high risk coronary plaque. We, therefore, hypothesize that enhanced carotid calcification presented by UTE MR may be a critical sign for symptomatic patients.

In this study, we will investigate the feasibility of enhanced UTE MR in human carotid arteries in vivo. Furthermore, we analyzed the correlation between UTE MR and microcalcification of in the carotid plaques. Based on the diagnostic ability of enhanced UTE MR for microcalcification, we will investigate the potential of enhanced calcification to distinguish symptomatic from asymptomatic patients with carotid atherosclerosis and research the prognostic ability of enhance calcufication in UTE MR.

Study Overview

Status

Recruiting

Intervention / Treatment

Detailed Description

Atherosclerosis, characterized by the accumulation of lipids and inflammatory cells in the large arteries, is one of the most common causes of morbidity and mortality in developed and developing countries. Atherosclerotic plaque rupture-induced thrombosis or obstruction of artery is the most important cause for the sudden and unpredictable onset of acute artery stroke. Our understanding of specific characteristics of the vulnerable atherosclerotic plaque has been enhanced by retrospective pathological studies, which have identified common phenotypic features of the atherosclerotic plaque most prone to rupture and trigger thrombotic events. A thin fibrous cap, a large lipid core, high macrophage count, and intraplaque hemorrhage have all been identified as markers of the so-called "vulnerable" plaque being related to a higher stroke risk.

Calcification of atherosclerotic lesions was long thought to be an age - related, passive process where a combination of high local concentrations of phosphates and phosphatidylserines from necrotic cells and an absence of calcification inhibitors results in the precipitation of calcium phosphate particles. Recently increasingly data has revealed that atherosclerotic calcification is a more active process, involving complex signaling pathways and bone-like genetic programs. The distinction of early or active calcification as a destabilizing process and late calcification as a more stable state has also been supported by histological studies. This has lead to interest in characterizing early stages of calcification metabolically by making use of the positron emission tomography (PET)/CT imaging of atherosclerosis using 18F-sodium fluoride (18F-NaF), which has recently been reported having the potential to distinguish dormant areas with on-going mineralization and quiescent atherosclerotic calcium. Nevertheless, PET/CT is an expensive and a radioactive examination, which is not appropriate for large-scale screening or serial follow-up studies.

MRI is ideal for serial studies of lesions of atherosclerosis over time because it is noninvasive and is superior to other imaging modalities in distinguishing soft tissue contrast. In conventional gradient echo based MRI with TEs in the 1 to 2 ms range, however, the very short T2 relaxation time of solid calcifications on the order of some μs causes almost complete signal cancellation, which may cause significant overestimation of the calcified region and could not provide information about calcium density. Moreover, the low or zero signal from calcium with short T2 means that there is little opportunity to manipulate conspicuity by using different pulse sequences or contrast agents.

Recently, ultrashort echo time (UTE) MR, which allows detection of the ultrashort T2 components, has been used to image plaque calcification in ex vivo carotid and coronary arteries. The results demonstrated that UTE images are able to identify plaque calcification and enables accurate quantification of calcium volumes. However, gadolinium-based contrast agents during in vivo CMR could not be performed in these ex vivo study. Agnese et al. believed that calcifications with 18F-NaF PET uptake might be considered to represent dormant areas where on-going mineralization, which is a key sign to identify and localise ruptured and high risk coronary plaque. We, therefore, hypothesize that enhanced carotid calcification presented by UTE MR may be a critical sign for symptomatic patients.

In this study, we will investigate the feasibility of enhanced UTE MR in human carotid arteries in vivo. Furthermore, we analyzed the correlation between UTE MR and microcalcification of in the carotid plaques. Based on the diagnostic ability of enhanced UTE MR for microcalcification, we will investigate the potential of enhanced calcification to distinguish symptomatic from asymptomatic patients with carotid atherosclerosis and research the prognostic ability of enhance calcufication in UTE MR.

Study Type

Observational

Enrollment (Anticipated)

60

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

    • Shandong
      • Jinan, Shandong, China, 250031

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

  • Child
  • Adult
  • Older Adult

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Sampling Method

Probability Sample

Study Population

Sixty patients referred for carotid endarterectomy or stent were prospectively enrolled.Patients gave written informed consent to participate in this Institutional Review Board-approved human subjects investigation. Clinical assessment at baseline using both patient interview and chart review documented presence or absence of symptoms (symptomatic and asymptomatic patients, respectively) attributable to the carotid artery disease, such as transient ischemic attack or cerebrovascular accident in the distribution of the diseased artery and absence of other source of embolism.

Description

Inclusion Criteria:

Patients referred for carotid endarterectomy or stent were prospectively enrolled.

Exclusion Criteria:

Patients with ferromagnetic metal, active implants such as pacemakers, aneurysm clips, known claustrophobia, and those who were unable to provide informed consent were excluded from enrollment.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
Asymptomatic group
Group with asymptomatic patients with carotid atherosclerosis.
Enhanced carotid calcification presented by UTE MR.
Symptomatic group
Group with symptomatic patients with carotid atherosclerosis.
Enhanced carotid calcification presented by UTE MR.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Symptoms attributable to the carotid artery disease
Time Frame: 3 years
Clinical assessment at baseline using both patient interview and chart review documented presence or absence of symptoms (symptomatic and asymptomatic patients, respectively) attributable to the carotid artery disease, such as transient ischemic attack or cerebrovascular accident in the distribution of the diseased artery and absence of other source of embolism.
3 years

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Sponsor

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Anticipated)

June 1, 2019

Primary Completion (Anticipated)

December 31, 2024

Study Completion (Anticipated)

December 31, 2025

Study Registration Dates

First Submitted

February 20, 2019

First Submitted That Met QC Criteria

February 20, 2019

First Posted (Actual)

February 21, 2019

Study Record Updates

Last Update Posted (Actual)

February 21, 2019

Last Update Submitted That Met QC Criteria

February 20, 2019

Last Verified

February 1, 2019

More Information

Terms related to this study

Other Study ID Numbers

  • 201703

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Vulnerable Atherosclerotic Plaque

Clinical Trials on MRI

3
Subscribe