Bone Adaptation to Impact Loading

June 13, 2008 updated by: University of Oulu

Bone Adaptation to Impact Loading - Significance of Loading Intensity

Ageing populations have made osteoporosis and fragility fractures a major public health concern worldwide. Half of all women and 30% of all men will suffer a fracture related to osteoporosis during their lifetime. While medical prevention of this immense problem is impossible at population level, it is necessary to find efficient preventive strategies. Exercise is one of the major prevention approaches because one reason behind the increasing burden of osteoporosis is the modern sedentary lifestyle. However, the optimal type, intensity, frequency, and duration of exercise that best enhances skeletal integrity are still largely unknown.

We conducted a 12-month population-based randomized controlled exercise intervention in 120 premenopausal women. The aim was to investigate the effect of impact exercise on bone mineral density, geometry and metabolism in healthy women with the intention of assessing the intensity and amount of impact loading with a novel accelerometer-based measurement device. Training effects on risk factors of osteoporotic fractures, physical performance and risk factors of cardiovascular diseases were also evaluated.

This study demonstrated that 12 months of regular impact exercise favoured bone formation, increased bone mineral density in weight-bearing bones, especially at the hip, and led to geometric adaptations by increasing periosteal circumference. Bone adaptations had a dose- and intensity-dependent relationship with measured impact loading. Changes in proximal femur were threshold-dependent, indicating the importance of high impacts exceeding acceleration of 4 g as an osteogenic stimulus. The number of impacts needed to achieve this stimulation was 60 per day. Impact exercise also had a favourable effect on physical performance and cardiorespiratory risk factors by increasing maximal oxygen uptake, dynamic leg strength and decreasing low-density lipoproteins and waist circumference. Changes were dose-dependent with impact loading at wide intensity range.

Bone adapts to impact loading through various mechanisms to ensure optimal bone strength. The number of impacts needed to achieve bone stimulation appeared to be 60 per day, comparable to the same number of daily jumps. If done on a regular basis, impact exercise may be an efficient and safe way of preventing osteoporosis.

Study Overview

Status

Completed

Conditions

Intervention / Treatment

Study Type

Interventional

Enrollment (Actual)

120

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

      • Oulu, Finland, 90014
        • University of Oulu

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

35 years to 40 years (ADULT)

Accepts Healthy Volunteers

No

Genders Eligible for Study

Female

Description

Inclusion Criteria:

  • Random population-based sample of women:

    • Age 35-40 yr
    • residing in the city of Oulu, Finland
    • in March 2002

Exclusion Criteria:

  • cardiovascular, musculoskeletal, respiratory, or other chronic diseases that might limit training and testing
  • diseases or medication affecting the bone
  • pregnancy and breastfeeding
  • regular current or previous participation in impact-type exercises and long-distance running more than three times a week

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: PREVENTION
  • Allocation: RANDOMIZED
  • Interventional Model: PARALLEL
  • Masking: SINGLE

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
NO_INTERVENTION: 2
Control group
EXPERIMENTAL: 1
Exercise
Progressive impact exercise

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
bone mineral density
Time Frame: 0 and 12 months
0 and 12 months

Secondary Outcome Measures

Outcome Measure
Time Frame
muscle strength
Time Frame: 0 and 12 months
0 and 12 months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

May 1, 2002

Primary Completion (ACTUAL)

June 1, 2003

Study Completion (ACTUAL)

June 1, 2003

Study Registration Dates

First Submitted

June 11, 2008

First Submitted That Met QC Criteria

June 13, 2008

First Posted (ESTIMATE)

June 16, 2008

Study Record Updates

Last Update Posted (ESTIMATE)

June 16, 2008

Last Update Submitted That Met QC Criteria

June 13, 2008

Last Verified

June 1, 2008

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Osteoporosis

Clinical Trials on Exercise

3
Subscribe