Latency of Vibration-Induced Reflex Muscle Activity (LVIRMA)

June 18, 2015 updated by: Bagcilar Training and Research Hospital

Latency of Whole-Body Vibration Induced Reflex Muscle Activity

Whole Body Vibration (WBV) applies thrust force in opposite direction to gravity to body.This mechanical stimulation induces reflex muscular activity. Tonic vibration reflex (TVR) is most commonly cited mechanism to explain WBV-induced reflex muscular activity (WBV-IRMA), although there is no conclusive evidence that TVR occurs. The bone myoregulation reflex is another neurologic mechanism used to explain the effects of vibration on muscular performance.

Investigators hypothesized that latency of WBV-IRMA is different from latency of TVR. Primary aim of this study is to determine latency of WBV-IRMA. Secondary aim is to investigate whether WBV-IRMA is explained with TVR.

Twenty healthy young adult men are planned to include in this study. Participants will stand upright with their knees locked during WBV. PowerPlate Pro5 will be used for WBV. WBV with high amplitude at 25,30,35,40,45 and 50 Hz will be applied. Surface electrodes will be placed on both the soleus muscles. To measure TVR latency, piezo-electric accelerometer will be placed on the achilles tendon and this achilles tendon will be stimulated with spring based mechanical reflex hammer. Our pilot study was showed that motor unit potentials (MUAP) occurred in a 1:1 response with vibration. After confirmation of this finding, WBV-IRMA latency will be measured in the present study. To measure WBV-IRMA latency, piezo-electric force sensor will be placed between heel and WBV platform. Exact moment of initial strike of heel when thrust force expressed by WBV begin to be transferred to body will be determined. The time between moment of the initial strike and corresponding MUAP is defined as "WBV-IRMA latency". Piezo-electric stretch sensor will be placed between knee and malleol to simulate muscle spindle. The reflex muscle activity of soleus muscles will be measured by PowerLab (data acquisition system, ADInstruments, Australia) device.

This project is planed to be completed in 1 months.

Study Overview

Status

Completed

Detailed Description

Whole-body vibration (WBV), as a method of exercise training, is becoming increasingly popular in physical therapy, rehabilitation, and professional sports, and is increasingly used in beauty and wellness applications due to its beneficial effects on the neuromusculoskeletal system. These benefits include improved strength, power, flexibility, jump height, and balance. However, little is known about the physiological mechanisms underlying the effects of WBV on muscular performance, although the presence of reflex muscle activity during WBV has been shown. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of WBV on muscular performance, although there is no conclusive evidence that TVR occurs. Studies have reported that direct vibration applied to a muscle or tendon stimulates muscle spindles, thereby causing a tonic vibration reflex to occur. As highlighted by these studies, muscle spindle discharges are sent to the spinal cord through Group Ia afferents during muscle or tendon vibration. There, they activate motoneurones that cause the muscle to contract. However, it has been reported that the sensitivity of the muscle spindle decreases or does not increase and that presynaptic inhibition occurs in Group Ia afferent fibers with vibration.

The bone myoregulation reflex (BMR) is another neurologic mechanism used to explain the effects of vibration on muscular performance. BMR is a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Osteocytes embedded in the bone matrix are interconnected by numerous dendritic processes, forming a wide, mechanosensitive cellular network. Osteocytes exposed to cyclic mechanical loading send mechanical input signals to the central nervous system, influencing the neuronal regulation of muscle activity.

Investigators hypothesized that latency of WBV-IRMA is different from latency of TVR. Primary aim of this study is to determine latency of WBV-IRMA. Secondary aim is to investigate whether WBV-IRMA is explained with TVR.

Twenty healthy young adult men are planned to include in this study. Participants will stand upright with their knees locked during WBV. PowerPlate Pro5 will be used for WBV. WBV with high amplitude at 25,30,35,40,45 and 50 Hz will be applied. Surface electrodes will be placed on both the soleus muscles. To measure TVR latency, piezo-electric accelerometer will be placed on the achilles tendon and this achilles tendon will be stimulated with spring based mechanical reflex hammer. Our pilot study was showed that motor unit potentials (MUAP) occurred in a 1:1 response with vibration. After confirmation of this finding, WBV-IRMA latency will be measured in the present study. To measure WBV-IRMA latency, piezo-electric force sensor will be placed between heel and WBV platform. Exact moment of initial strike of heel when thrust force expressed by WBV begin to be transferred to body will be determined. The time between moment of the initial strike and corresponding MUAP is defined as "WBV-IRMA latency". Piezo-electric stretch sensor will be placed between knee and malleol to simulate muscle spindle. The reflex muscle activity of soleus muscles will be measured by PowerLab (data acquisition system, ADInstruments, Australia) device.

This project is planed to be completed in 1 months.

Study Type

Interventional

Enrollment (Actual)

20

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

      • Istanbul, Turkey
        • Bagcilar TRH

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

20 years to 45 years (Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

Male

Description

Inclusion Criteria:

  • Healthy men
  • Men with ages varying between 20 and 45 years
  • Right-handed men

Exclusion Criteria:

  • Bone, muscle/tendon, joint, vascular, dermatologic diseases in lower extremities and spine
  • Medication that could affect the musculoskeletal system
  • Postural abnormalities (scoliosis, kyphosis, etc)
  • Systemic diseases

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Basic Science
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: WBV group
whole-body vibration (WBV) group
whole-body vibration (4 mm amplitude, 25,30,35,40,45,50 Hz)
Other Names:
  • Cyclic mechanical loading

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
latency of reflex muscle activity
Time Frame: 1 month
Whole-body vibration induced reflex muscle activity latency
1 month

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Chair: ILHAN KARACAN, MD, Bagcilar Training & Research Hospital
  • Principal Investigator: MUHARREM CIDEM, MD, Bagcilar Training & Research Hospital
  • Principal Investigator: HALIL I CAKAR, PhD, Fatih University Biomedical Engineering Instıtute

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

January 1, 2013

Primary Completion (Actual)

January 1, 2013

Study Completion (Actual)

February 1, 2013

Study Registration Dates

First Submitted

January 28, 2013

First Submitted That Met QC Criteria

January 29, 2013

First Posted (Estimate)

January 31, 2013

Study Record Updates

Last Update Posted (Estimate)

June 19, 2015

Last Update Submitted That Met QC Criteria

June 18, 2015

Last Verified

June 1, 2015

More Information

Terms related to this study

Other Study ID Numbers

  • BEAH FTR-8

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Effects of Vibration

Clinical Trials on whole-body vibration (WBV)

3
Subscribe