New Signaling Pathway Targeting Systemic Lupus Erythematosus

June 27, 2019 updated by: Eman Ragab Mohamed Ibrahem, Assiut University

Studying of New Signaling Pathway Targeting Systemic Lupus Erythematosus

Systemic lupus erythematosus is inflammatory autoimmune disease that affects over one million people in the United States. It has a higher prevalence and incidence rate among women compared with men, and among African Americans compared with Caucasians. Despite advances in treatment, standardized mortality rates in SLE remain three times higher than in the general population. The risk of mortality is significantly increased because of renal disease, cardiovascular disease, and infection.The etiology of SLE is multifactorial, with genetic predisposition, environmental factors and epigenetic alterations are involved. However, the molecular mechanisms underlying this systemic autoimmune response remain largely unknown. A key issue in the pathogenesis of lupus is how intracellular antigens become exposed and targeted by the immune system.

Study Overview

Status

Unknown

Conditions

Detailed Description

Antinuclear antibodies play a direct role in pathogenesis by forming immune complexes. These complexes can either deposit in the kidney or stimulate cytokine production. Dead and dying cells can fill the blood with a plentiful supply of immune complex components in lupus. So cell death is a critical issue in the pathway to auto-reactivity. Pyroptosis is a new member of cell death list. It combines the release of pro-inflammatory mediators and nuclear molecules in a way that could drive lupus. Nod-like receptor pyrins-3, caspase-1, IL-18, and IL-1β are commonly accepted markers of pyroptosis.

Gasdermin D was recently identified as the final pyroptosis executioner downstream of inflammasome activation, and may be an attractive drug target for many diseases. GSDMD is a member of the gasdermin protein family. It was identified as a caspase substrate. Under normal cellular conditions, the C-terminus of GSDMD auto-inhibits the pore-forming activity of the N-terminus. When extracellular signals associated with pyroptosis activate inflammasomes they subsequently cleave and activate caspases-1, -4, -5, and -11. Consequently, activated caspase-1 cleaves and separates the N- and C-terminals of GSDMD. Activated GSDMD forms nanoscopic pores in the cell membrane, leading to the release of proinflammatory materials and cell swelling.

Reactive oxygen species regulates the signaling pathways in response to the changes of the intracellular and extracellular environments. However, overproduction of ROS is toxic and lead to dysfunction of cell and tissue. Oxidative stress is increased in SLE. The increased ROS could promote the release of inflammatory related signaling factors, including nod-like receptor inflammasome and nuclear factor-κB. A recent study showed that inhibition of ROS generation suppressed pyroptosis of hematopoietic stem cells. It has been widely reported that NF-kB is a critical molecular switch for cellular response to oxidative stress. NF-kB exists in the form of dimer and has been demonstrated to be involved in the development and progression of various diseases associated with inflammation, apoptosis, and proliferation. A recent study showed that NF-kB is an essential transcription factor of GSDMD.

In the recent decades, increasing evidence have revealed the roles of epigenetic dysregulation, including microRNA, in the pathogenesis of SLE. MiRNAs is a class of short non-coding RNA approximately 21-25 nucleotides in length that plays important roles in many cellular processes by regulating gene expression. MiRNAs make up a novel class of post-transcriptional gene regulators By combining with the 3' noncoding region of target gene mRNA inducing their degradation or impairing their translation.

MiR-379-5p is located at delta-like 1 homolog-deiodinase, iodothyronine 3 genomic region on 14q32.31. The DLK1-DIO3 region contains 54 miRNAs that is associated with organ development and disease pathogenesis, especially carcinogenesis. Luciferase reporter assays showed that GSDMD was a direct target of miR-379-5p. The over-expression of miR-379-5p blocked the arsenite induced increases of GSDMD levels effect that were reversed by up-regulation of GSDMD.

Study Type

Observational

Enrollment (Anticipated)

60

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 60 years (Adult)

Accepts Healthy Volunteers

N/A

Genders Eligible for Study

All

Sampling Method

Non-Probability Sample

Study Population

- SLE diagnosed patients between (18- 60) years old will be enrolled. All participants should met at least four of the American College of Rheumatology criteria (Hochberg, 1997). Disease activity will be assessed in accordance with the SLE Disease Activity Score (SLEDAI 2000 (SLEDAI-2K) (Ward et al., 2000).

Description

Inclusion Criteria:

  • SLE diagnosed patients between (18- 60) years old will be enrolled.

Exclusion Criteria:

  • Patients with known pre-existing immunological disorders.
  • Patients with known pre-existing infection.
  • clinical diagnosis of cancer.
  • patients diagnosed with concomitant acute myocardial infarction.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Observational Models: Case-Control
  • Time Perspectives: Retrospective

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
SLE patient group
SLE diagnosed patients between (18- 60) years old will be enrolled. All participants should met at least four of the American College of Rheumatology criteria (Hochberg, 1997). Disease activity will be assessed in accordance with the SLE Disease Activity Score (SLEDAI 2000 (SLEDAI-2K) (Ward et al., 2000).
quantitative real-time polymerase chain reaction
control group
The control group will include age and sex matched healthy volunteers
quantitative real-time polymerase chain reaction

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
determination of the expression levels of GSDMD, NF-kB and miR-379-5p in SLE group and Control group
Time Frame: 6 months
GSDMD, NF-kB and miR-379-5p expression levels will be measured using quantitative real time PCR
6 months
detection of the relationship between oxidative stress and pyroptosis
Time Frame: 6 months
correlation between oxidative stress and pyroptosis and detect if there is relationship between them
6 months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Ghada M Ezzat, PhD, Department of Medical Biochemistry, Faculty of Medicine, Assiut University
  • Principal Investigator: Marwa A Gaber, PhD, Department of Medical Biochemistry, Faculty of Medicine, Assiut University

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Anticipated)

July 1, 2019

Primary Completion (Anticipated)

December 1, 2020

Study Completion (Anticipated)

April 1, 2021

Study Registration Dates

First Submitted

May 28, 2019

First Submitted That Met QC Criteria

June 11, 2019

First Posted (Actual)

June 12, 2019

Study Record Updates

Last Update Posted (Actual)

June 28, 2019

Last Update Submitted That Met QC Criteria

June 27, 2019

Last Verified

May 1, 2019

More Information

Terms related to this study

Other Study ID Numbers

  • Systemic lupus erythematosus

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on SLE

Clinical Trials on Taking peripheral blood samples

3
Subscribe