Increased Gluconeogenesis is One Cause of Cystic Fibrosis Related Diabetes (CFRD)

Increased Gluconeogenesis is One Cause of CFRD

People with CF have a high incidence of diabetes, called CFRD. CFRD is an important cause of worsened morbidity and mortality, thus understanding the pathophysiology underlying its development is imperative. Insulin deficiency has been well recognized as one cause of CFRD; however the clinical presentation and studies of pathogenesis indicate that the etiology is more complex. There is strong evidence that normal metabolism of carbohydrate, protein and fat is altered in CF. We believe that the inflammatory response to chronic underlying lung disease is responsible for insulin resistance and alters substrate metabolism, and that these changes, in addition to insulin deficiency cause CFRD. Our global hypothesis is that hyperglycemia is caused, in part, by high rates of gluconeogenesis resulting from excessive amino acid substrate availability caused by cytokine-mediated protein catabolism. We further hypothesize that inflammation alters normal fatty acid metabolism leading to lipogenesis, an energy wasteful pathway. We will recruit 24 adult CF subjects and 10 controls (similar in distribution in lean tissue mass, age and gender) and will categorize them according to glucose tolerance (OGTT), as well as insulin secretion and insulin sensitivity using the Tolbutamide-stimulated IVGTT and the Minimal Model. Clinical status will be characterized by measuring pulmonary function and modified NIH scores, in addition to measuring levels of circulating cytokines. Gluconeogenesis (GNG) will be quantified by measuring the incorporation 2H into the 2nd, 5th and 6th carbons of glucose. Amino acid turnover rates will be measured using stable isotopes of lactate and alanine and whole body protein turnover (WBPT) will be measured using [1-13C]leucine and [15N2]urea. Fat metabolism will be evaluated by measuring ketone body turnover using stable isotopes, and by quantifying lipogenesis using the isotopomer equilibration method. Key enzymes of fatty acid metabolism will also be measured. We will utilize indirect calorimetry to measure resting energy expenditure. Subjects will be recruited from the CF centers at the University of Texas- Southwestern and the South Central CF Consortium.

Study Overview

Status

Completed

Intervention / Treatment

Detailed Description

People with CF have a high incidence of diabetes, called CFRD. CFRD is an important cause of worsened morbidity and mortality, thus understanding the pathophysiology underlying its development is imperative. Insulin deficiency has been well recognized as one cause of CFRD; however the clinical presentation and studies of pathogenesis indicate that the etiology is more complex. There is strong evidence that normal metabolism of carbohydrate, protein and fat is altered in CF. We believe that the inflammatory response to chronic underlying lung disease is responsible for insulin resistance and alters substrate metabolism, and that these changes, in addition to insulin deficiency cause CFRD. Our global hypothesis is that hyperglycemia is caused, in part, by high rates of gluconeogenesis resulting from excessive amino acid substrate availability caused by cytokine-mediated protein catabolism. We further hypothesize that inflammation alters normal fatty acid metabolism leading to lipogenesis, an energy wasteful pathway. We will recruit 24 adult CF subjects and 10 controls (similar in distribution in lean tissue mass, age and gender) and will categorize them according to glucose tolerance (OGTT), as well as insulin secretion and insulin sensitivity using the Tolbutamide-stimulated IVGTT and the Minimal Model. Clinical status will be characterized by measuring pulmonary function and modified NIH scores, in addition to measuring levels of circulating cytokines. Gluconeogenesis (GNG) will be quantified by measuring the incorporation 2H into the 2nd, 5th and 6th carbons of glucose. Amino acid turnover rates will be measured using stable isotopes of lactate and alanine and whole body protein turnover (WBPT) will be measured using [1-13C]leucine and [15N2]urea. Fat metabolism will be evaluated by measuring ketone body turnover using stable isotopes, and by quantifying lipogenesis using the isotopomer equilibration method. Key enzymes of fatty acid metabolism will also be measured. We will utilize indirect calorimetry to measure resting energy expenditure. Subjects will be recruited from the CF centers at the University of Texas- Southwestern and the South Central CF Consortium.

Our proposal is intended to better describe the unique metabolism of people with CF, and to provide a comprehensive evaluation of pathophysiologic changes which contribute to the development of CFRD and to wasting; and are part of the applicant's long-range goal which is to identify the underlying causes of CF related diabetes and catabolism so that disease-specific therapies can be developed. We fully expect that the proposed studies will provide new and important information.

Study Type

Interventional

Enrollment (Actual)

42

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Texas
      • Dallas, Texas, United States, 75390-9063
        • University of Texas Southwestern

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 45 years (Adult)

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Description

cystic fibrosis with any type of glucose tolerance

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Diagnostic
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: Healthy volunteers
Stable isotopes were used to quantify gluconeogenesis GNG, hepatic glucose production (HGP), and protein breakdown.
Experimental: Cystic fibrosis (CF)
Stable isotopes were used to quantify gluconeogenesis GNG, hepatic glucose production (HGP), and protein breakdown.

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Dana S Hardin, MD, University of Texas

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

March 1, 2003

Primary Completion (Actual)

March 1, 2005

Study Completion (Actual)

March 1, 2005

Study Registration Dates

First Submitted

May 3, 2004

First Submitted That Met QC Criteria

May 4, 2004

First Posted (Estimate)

May 5, 2004

Study Record Updates

Last Update Posted (Actual)

March 14, 2018

Last Update Submitted That Met QC Criteria

March 12, 2018

Last Verified

March 1, 2018

More Information

Terms related to this study

Other Study ID Numbers

  • 58603DK (completed)
  • R01DK058603 (U.S. NIH Grant/Contract)

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Diabetes Mellitus

Clinical Trials on Stable isotopes

3
Subscribe