Application of Genetic Polymorphisms of DNA Repair in The Prediction of Prostate Cancer Susceptibility and Its Clinical Outcome

November 25, 2005 updated by: National Taiwan University Hospital
Primary: to investigate the effects of DNA repair gene polymorphisms on prostate cancer susceptibility, pathological grade, disease stage and clinical outcome Secondary: to understand the association between DNA repair gene polymorphism and prostate cancer and provided important information for screening, prevention and treatment of prostate cancer

Study Overview

Status

Unknown

Conditions

Detailed Description

DNA repair plays a key role in carcinogenesis through the removal and repair of DNA damage induced by endogenous and environmental sources. The DNA repair system included four pathways: 1) Base Excision Repair (BER), 2) Nucleotide Excision Repair (NER), 3) Mismatch Repair (MMR) and 4) Double-Strand Break Repair, including homologous recombination pathway and nonhomologous end-joining repair pathway. Decreased and impaired DNA repair capacity has been reported in various cancers, however, its effect on prostate cancer still under investigated.

Common polymorphisms in DNA repair gene may alter protein function and individual's capacity to repair damaged DNA, hence, influence the cancer susceptibility. Polymorphic variants of DNA repair gene have been found to be associated with cancer susceptibility, but rare studies have investigated their effect on prostate cancer. Since variation in the function of these DNA repair genes also impact a cancer cell's viability or resistance to treatment, genetic variants in DNA repair might serve as a valuable biomarker in forcasting the result of cancer treatment. In fact, some reports have demonstrated the association between polymorphisms of DNA repair genes and results of treatment of various cancers.

For the present study proposal, we focused on several DNA repair genes: X-ray repair cross- complementing group 1 (XRCC1), human oxoguanine glycosylase I (hOGG1), xeroderma pigmentosum complementation group D (XPD), hMSH2, hMLH1 and X-ray repair cross-complementing group 3 (XRCC3), which might have relevance in prostate carcinogenesis based on their known functions. XRCC1 is involved in DNA repair in the base excision pathway, the hOGG1 gene encodes a DNA glycosylase /apurinic-apyrimidinic lyase that catalyzes the excision and removal the 8-OH-dG (8-hydroxy- 2-deoxyguanine) - which is a major form of oxidative DNA damage. The XPD gene codes for a DNA helicase involved in transcription and nucleotide excision repair. The hMSH2 and hMLH1 are genes involved with mismatch repair. The XRCC3 gene encoded a protein in the double-strand break homologous recombinational repair pathways.

In this proposed study, we will also use PCR-based methods to investigate the effects of DNA repair gene polymorphisms on prostate cancer susceptibility, pathological grade, disease stage and clinical outcome. With these efforts, we will further understand the association between DNA repair gene polymorphism and prostate cancer and provided important information for screening, prevention and treatment of prostate cancer.

Study Type

Observational

Enrollment

100

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

      • Taipei, Taiwan
        • Recruiting
        • National Taiwan University Hospital
        • Contact:
        • Principal Investigator:
          • Chao-Yuan Huang, MD

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

1 second and older (Child, Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

Male

Description

Inclusion Criteria:

  • prostate cancer approved by pathology

Exclusion Criteria:

  • combined with other malignancy
  • accepting blood transfusion within 6 months

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Chao-Yuan Huang, MD, National Taiwan University Hospital

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

March 1, 2005

Study Registration Dates

First Submitted

September 12, 2005

First Submitted That Met QC Criteria

September 12, 2005

First Posted (Estimate)

September 14, 2005

Study Record Updates

Last Update Posted (Estimate)

November 28, 2005

Last Update Submitted That Met QC Criteria

November 25, 2005

Last Verified

March 1, 2005

More Information

Terms related to this study

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Prostate Cancer

3
Subscribe