The Effect of Raising Ketones Directly With MCT Oil on Inflammation in Healthy Young Adults

April 17, 2019 updated by: Jonathan Little, University of British Columbia

Impact of Raising B-OHB Directly With MCT Oil on NLPR3 Inflammasome Activation in Healthy, Young Adults

Ketogenic diets are gaining support as a method to lower inflammation within the body, but studies have not been able to show the way by which this occurs. Ketones, which are molecules made by the body as a source of energy during carbohydrate restriction, have been shown to have the ability to alter the number and types of messages that immune cells send to each other, and thus have the potential to lower inflammation. To determine whether raising ketones independent of diet reduce inflammation, 20 healthy, young men and women will follow a 14-day "normal" diet combined with MCT oil supplements. Based on previous research, the investigators expect that raising ketones will reduce immune cell pro-inflammatory signaling.

Study Overview

Status

Completed

Detailed Description

The potential for a ketogenic diet to reduce inflammation has become increasingly popular in recent years, but direct scientific evidence to demonstrate that ketones impact inflammatory mechanisms in humans does not exist. B-hydroxybutyrate (B-OHB) is the most abundant circulating ketone and recent evidence indicates that B-OHB may be able to act as a direct signal to inhibit cellular pathways involved in inflammation.

B-OHB can be raised naturally by induction of nutritional ketosis, which is a normal physiological response to severe reductions in carbohydrate or caloric intake. In this state, free fatty acids are converted to ketone bodies (primarily B-hydroxybutyrate [B-OHB]) by the liver in order to provide essential fuel for metabolically active tissues. However, determining the direct effects of B-OHB in human ketogenic diet studies is difficult due to the numerous metabolic adaptations that occur in nutritional ketosis (e.g., reduced insulin, elevated free fatty acids, stable glucose) and the propensity for participants to lose body and fat mass over longer period.

B-OHB can also be raised independent of diet by supplementation with medium chain triglyceride (MCT) oil, allowing for induction of ketosis without the additional metabolic adaptations. In addition to being an important fuel source, recent interest has focused on a potential signaling role for B-OHB with cell culture and animal studies describing anti-inflammatory, anti-oxidant, and anti-cancer effects. The cellular pathways through which B-OHB is proposed to reduce inflammation, include the NLPR3 inflammasome and histone deacetylases (HDACs), both of which play important roles in regulating cellular inflammation. The NLRP3 inflammasome pathway is an immune complex which, upon activation, initiates downstream pro-inflammatory cascades including the activation of caspase-1 and interleukin (IL)-1B. These pro-inflammatory cascades have been implicated in the propagation of sterile inflammation, which has been identified as a major contributor to certain chronic inflammatory diseases such as type 2 diabetes and atherosclerosis. HDACs are enzymes typically found within the nucleus and have the ability to regulate signaling through innate immune pathways. B-OHB has been shown to have the ability to inhibit HDACs, and consequently has the potential to decrease oxidative stress and inflammation. The NLRP3 inflammasome and HDACs are responsive to the intracellular nutritional milieu and thus their activity may be able to be modulated through increases in B-OHB.

The use of MCT oil supplements will allow the investigators to raise blood B-OHB independent of diet, and thus directly test the immunomodulatory effects of B-OHB in healthy, adult males. This fundamental research is needed to understand whether ketones have direct immunomodulatory effects or if it is the widespread systemic metabolic adaptation to a ketogenic diet that might impact inflammatory processes.

The overall objective of this pilot study is to determine if directly raising B-OHB through supplementation with MCT oil impacts innate immune cell function and/or phenotype. Based on previous cell culture and animal research showing that B-OHB can reduce pro-inflammatory signaling, it is hypothesized that raising B-OHB with MCT oil supplementation will result in a attenuation of caspase-1 activation and mature IL-1B secretion, both markers of NLRP3 inflammasome activation. Additionally, it is hypothesized that raised B-OHB will result in greater histone acetylation, as B-OHB has been shown to be an HDAC inhibitor.

Study Type

Interventional

Enrollment (Actual)

15

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • British Columbia
      • Kelowna, British Columbia, Canada, V1V 1V7
        • University of British Columbia, Okanagan.

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 30 years (Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • BMI between 18.5-29.9 kg/m^2
  • Females only: have a regular 28-35 day menstrual cycle

Exclusion Criteria:

  • Diagnosed metabolic disorder such as diabetes, metabolic syndrome, hypothyroidism, or any other condition known to affect metabolism;
  • history of inflammatory disorders such as Rheumatoid Arthritis, Crohn's Disease, Irritable Bowel Syndrome
  • Prescribed any anti-inflammatory medication cannot be avoided for the duration of the study;
  • current consumption of a very low-carbohydrate diet (e.g., "Atkins", "Protein Power Plan", "Paleo diet", etc.) or have within the previous three months;
  • adhere to dietary restrictions such as vegetarianism or veganism;
  • unable to abstain from drugs (prescription and recreational) or alcohol for the duration of the study;
  • competitive athlete (currently training for an elite sport).

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Other
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: MCT Oil Supplementation
Participants consume MCT oil (97-99% octanoic acid) twice per day for 14 days while consuming a diet similar to the recommended health guidelines (40-50% carbohydrate; 30-40% fat; 20-25% protein).
Participants consume MCT oil (97-99% octanoic acid) twice per day for 14 days. Dosing will begin at 5ml/dose for Days 1-2, 10ml for Days 3-4, and 15ml for the remainder of the intervention.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change from Baseline Caspase-1 Activation at 14 days
Time Frame: Measured the day before the first dose of MCT oil (baseline) and the last day of the 14 day trial (post).
Caspase-1 activation will be quantified by flow cytometry. The fluorescent inhibitor probe FAM-YVAD-FMK binds covalently to activated caspase-1 and emits at 530nm.
Measured the day before the first dose of MCT oil (baseline) and the last day of the 14 day trial (post).

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change from Baseline Histone H3 Acetylation at 14 days
Time Frame: Measured the day before the first dose of MCT oil (baseline) and the last day of the 14 day trial (post).
Histone H3 acetylation status will be quantified by flow cytometry using the conjugated acetyl-histone H3 antibody specific for Lys9 (Pacific Blue 455) and the conjugated acetyl-histone H3 antibody specific for Lys14 (Alexa Fluor 488).
Measured the day before the first dose of MCT oil (baseline) and the last day of the 14 day trial (post).
Change from Baseline Interleukin(IL)-1beta at 14 days
Time Frame: Measured the day before the first dose of MCT oil (baseline) and the last day of the 14 day trial (post).
Mature IL-1beta secretion will be quantified by enzyme-linked immunosorbent assay run in duplicate.
Measured the day before the first dose of MCT oil (baseline) and the last day of the 14 day trial (post).
Change from Baseline Blood beta-hydroxybutyrate at 14 days
Time Frame: Measured the day before the first dose of MCT oil (baseline), 1 and 2 hours after each meal on Day 1, 2, 13, and 14, as well as once every 2 days at a time which is convenient for the participant (i.e. on Day 4, 6, 8, 10, & 12).
Blood beta-hydroxybutyrate will be quantified in whole blood using FreeStyle Precision Blood β-Ketone Test Strips (Abbott, Abbot Park, IL, USA) with the FreeStyle Precision Neo Blood Ketone Monitoring System (Abbott).
Measured the day before the first dose of MCT oil (baseline), 1 and 2 hours after each meal on Day 1, 2, 13, and 14, as well as once every 2 days at a time which is convenient for the participant (i.e. on Day 4, 6, 8, 10, & 12).

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Jonathan Little, PhD, University of British Columbia

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

March 20, 2018

Primary Completion (Actual)

February 4, 2019

Study Completion (Actual)

February 4, 2019

Study Registration Dates

First Submitted

February 23, 2018

First Submitted That Met QC Criteria

March 4, 2018

First Posted (Actual)

March 9, 2018

Study Record Updates

Last Update Posted (Actual)

April 18, 2019

Last Update Submitted That Met QC Criteria

April 17, 2019

Last Verified

April 1, 2019

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

No

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on MCT Oil Supplementation

Clinical Trials on MCT Oil Supplementation

3
Subscribe