Preoperative Evaluation of Pulmonary Vascular Anatomy by Holograms (Holo-lungs)

June 27, 2023 updated by: European Institute of Oncology

Preoperative Evaluation of Pulmonary Vascular Anatomy by Augmented Reality (Holograms) in Patients Undergoing Lung Resection

Pulmonary vascular anatomy represents a constant challenge during lung resection, because of its variability in terms of vascular branches and anatomical variations.

Preoperative standard computed tomography is not always sufficient to foresee tricky abnormalities; augmented reality, thanks to holograms creation, may offer additional data on pulmonary vascular anatomy and its relation with neoplastic tissue. The aim of this study is to assess the possibility of correctly predict number, location and potential anomalies of pulmonary vascular anatomy of the lobe to be resected in patients undergoing lung resection for cancer.

Patients will receive standard preoperative oncologic and functional assessment. Preoperative computed tomography (CT) - performed according to a specific protocol - will be performed. CT images will be subsequently elaborated to generate 3D images (holograms). Two radiologists and two thoracic surgeons will analyze CT images and report number of artery and vein branches for the lobe to be resected. Moreover they will report every anatomical variation, according to the normal anatomy. After that, the same two radiologists and thoracic surgeons will analyze the holograms and perform the same analysis as quoted above. Patients will undergo to the planned surgical resection. The operating team will report the exact number of artery and vein branches of the resected lobe as well as every anatomical variation. Preoperative CT and holographic findings of the radiologists and the thoracic surgeons will be matched with the report of the operating team.

Study Overview

Status

Recruiting

Intervention / Treatment

Detailed Description

An augmented reality (AR) system provides the surgeon with computer processed imaging data in real-time via dedicated hardware and software. The projection of AR is made possible by using displays, projectors, cameras, trackers, or other specialized equipment.

At present, the applications of AR are limited by the essential requisite of preoperative 3D reconstructions of medical images. It is possible to create these reconstructions by using commercial or self-made software from the Digital Imaging and Communications in Medicine (DICOM) format . The quality of a reconstruction depends on the quality of input data and the accuracy of the reconstruction system. Such reconstructions can be used for virtual exploration of target areas, planning an elective surgical approach in advance, and for better orientation and navigation in the operative field. AR is especially useful in visualizing critical structures such as major vessels, nerves, or other vital tissues. By projecting these structures directly onto the patient, AR increases safety and reduces the time required to complete the procedure. Moreover Augmented reality proved to be an effective tool for training and skill assessment of surgery residents, other medical staff, or students. Augmented reality can be used effectively for preoperative planning and completion of the actual surgery in timely fashion. The preoperative 3D reconstructed images can be modified and prepared for display in AR systems. Commonly, AR is used for tailoring individually preferred incisions and cutting planes, optimal placement of trocars, or to generally improve safety by displaying positions of major organ components. Another benefit of AR is the ability to aid surgeons in difficult terrain after a neoadjuvant chemotherapy or radiotherapy.

Studies suggest that AR systems are becoming comparable to traditional navigation techniques, with precision and safety sufficient for routine clinical practice. Most problems faced presently will be solved by further medical and technological research. Augmented reality appears to be a powerful tool possibly capable of changing the field of surgery through a rational use. In the future, AR will likely serve as an advanced human-computer interface, working in symbiosis with surgeons, allowing them to achieve even better results. Nevertheless, further advancement is much needed to achieve maximum potential and cost-effectiveness of augmented reality.

Study Type

Observational

Enrollment (Estimated)

50

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

      • Milan, Italy, 20141
        • Recruiting
        • European Institute of Oncology
        • Contact:
          • Francesco Petrella, MD, PhD
      • Milan, Italy, 20143
        • Recruiting
        • European Institue of Oncology
        • Contact:

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 90 years (Adult, Older Adult)

Accepts Healthy Volunteers

N/A

Sampling Method

Non-Probability Sample

Study Population

Patients suffering from (any) lung cancer scheduled for anatomical lung resection

Description

Inclusion Criteria:

  • Planned anatomical resection for lung cancer
  • Signed and dated informed consent indicating that the patient has been informed of all pertinent aspects of the study.
  • Willingness and ability to comply with study procedures.

Exclusion Criteria:

  • Age younger than 18 years
  • Contraindications to general anesthesia
  • Poor general clinical conditions ( ECOG PS >=2)
  • Patients unable to provide informed consent

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Prediction of the exact number of pulmonary arteries and veins of the lobe to be resected.
Time Frame: 2020 - 2022
Two different investigator (1 senior radiologist and 1 senior thoracic surgery) evaluate standard preoperative CT scan and indicate the number of pulmonary artery and veins of the lobe to be resected; this will be reported in a dedicated registry. After that, the same investigators will evaluate holograms of the same patients and will report the number of arteries and veins of the lobe to be resected; they will then register these data in the same registry. After the operation, the operating surgeon will report - as usual - the number of the arteries and veins resected during the procedure. Finally the prediction of the investigators obtained only by CT scan evaluation or bay CT scan + holograms evaluation, will be compared with the operatory report.
2020 - 2022

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

March 1, 2020

Primary Completion (Actual)

March 1, 2022

Study Completion (Estimated)

March 1, 2024

Study Registration Dates

First Submitted

January 7, 2020

First Submitted That Met QC Criteria

January 10, 2020

First Posted (Actual)

January 13, 2020

Study Record Updates

Last Update Posted (Actual)

June 28, 2023

Last Update Submitted That Met QC Criteria

June 27, 2023

Last Verified

June 1, 2023

More Information

Terms related to this study

Additional Relevant MeSH Terms

Other Study ID Numbers

  • R1033/19-IEO1088

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Lung Cancer

Clinical Trials on Hologram

3
Subscribe