Evaluation of Role of Intraoperative Ultrasound in Gross Total Resection of Gliomas

February 3, 2023 updated by: Fadwa Ahmwd Ahmed, Assiut University
The use of intraoperative ultrasound (IOUS )seems to have significantly increased the Gross total Resection rate achieved in brain gliomas surgery. As regard intraoperative visualisation of the tumor and its residuals, the effectiveness of IOUS has been documented in a series of 192 High Grade glioma patients, in which the combination of neuronavigation and IOUS was also related to increased overall survival in a prospective study of 32 patients, documented a good level of agreement between intraoperative ultrasonography and postoperative contrast-enhanced MRI in detecting tumor residuel they concluded that the IOUS produces results similar to those of MRI, and therefore, can be used to maximize tumor resection.

Study Overview

Status

Not yet recruiting

Conditions

Intervention / Treatment

Detailed Description

The use of intraoperative ultrasound (IOUS) during neurosurgical procedures was first described in 1978 by MH Reid The initial interest towards US as an imaging tool in neurosurgery progressively weaned from the 80's until the early 2000's in favor of other imaging techniques such as CT and MRI

Maximal safe resection represents the gold standard for surgery of malignant brain tumors:

gross total resection of the tumor while preserving the surrounding functional brain tissue is the main goal, since it is associated with longer survival and better patient quality of life This is particularly true for gliomas, the most common primary malignant brain tumors Concerning gross total resection, accurate localization and precise delineation of the tumor margins are required in order to avoid devastating lesions on nervous structures Ultrasound may provide an alternative tool to intraoperative magnetic resonance imaging (MRI) for delineating tumor Tissues and improving the chances of gross total resection The purpose of brain tumor removal is maximal resection while sparing healthy tissues. The extent of resection is a key prognostic factor in survival time, functional recovery, and tumor recurrence rates The optimal results of brain lesion surgery may be achieved by maximal surgical resection without disturbance of neurological functions Due to the imprecise correlation between preoperative images,intraoperative anatomy, and also poor differentiation of some tumors from a normal tissue, better delineation of normal from tumor tissue intraoperatively could improve clinical outcome as increasing chance of total resection and decreasing normal tissue damage . Intraoperative imaging technology increases the extent of tumor resection and patients' outcome including survival time.

Intraoperative MRI are time-consuming and of high cost. Computed tomography (CT) usually is not of choice as ionizing radiation and limited mass delineation. Several researches have demonstrated that the image quality of ultrasound has improved enough to visualize and guide tumor resection The most important disadvantage of neuronavigation is the inconsistency with preoperative images from changes of the lesion and critical anatomic structures associated with brain shift as intraoperative tumor resection or cerebrospinal fluid drainage. This creates the need for updating the preoperative image with the intraoperative image

The use of intraoperative ultrasound (IOUS )seems to have significantly increased the Gross total Resection rate achieved in brain gliomas surgery. As regard intraoperative visualisation of the tumor and its residuals, the effectiveness of IOUS has been documented in a series of 192 High Grade glioma patients, in which the combination of neuronavigation and IOUS was also related to increased overall survival in a prospective study of 32 patients, documented a good level of agreement between intraoperative ultrasonography and postoperative contrast-enhanced MRI in detecting tumor residuel they concluded that the IOUS produces results similar to those of MRI, and therefore, can be used to maximize tumor resection.

Study Type

Observational

Enrollment (Anticipated)

45

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

  • ADULT
  • OLDER_ADULT
  • CHILD

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Sampling Method

Probability Sample

Study Population

Patients with all grades of gliomas confirmed by MRI any age and any sex

Description

Inclusion Criteria:

  • Patients with all grades of gliomas confirmed by MRI , MRI with contrast and MR spectroscopy .
  • Age of the patient: any age.
  • Both sex

Exclusion Criteria:

  • • Other tumours and space occupying lesion (sol) rather than gliomas confirmed by histopathology and preoperative imaging

    • Patients unfit for surgery

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
totally resection of glioma using intraoperative ultrasound
intraoperative cranial ultrasound

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Numbers of patients who have gliomas and totally resection by using intraoperative ultrasound
Time Frame: 1 year
Numbers of patients who have gliomas and totally resection by using intraoperative ultrasound
1 year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

  • 1. Giammalva, G.R.; Iacopino, D.G.; Azzarello, G.; Gaggiotti, C.; Graziano, F.; Gulì, C.; Pino, M.; Maugeri, R. End-of-Life Care in High-Grade Glioma Patients. The Palliative and Supportive Perspective. Brain Sci. 2018, 8, 125. [CrossRef] [PubMed] 2. La Torre, D.; Maugeri, R.; Angileri, F.F.; Pezzino, G.; Conti, A.; Cardali, S.M.; Calisto, A.; Sciarrone, G.; Misefari, A.; Germanò, A.; et al. Human leukocyte antigen frequency in human high-grade gliomas: A case-control study in Sicily. Neurosurgery 2009, 64, 1082-1088. [CrossRef] [PubMed] 3. Maugeri, R.; Schiera, G.; Di Liegro, C.M.; Fricano, A.; Iacopino, D.G.; Di Liegro, I. Aquaporins and brain tumors. Int. J. Mol. Sci. 2016, 17, 1029. [CrossRef] [PubMed] 4. Grasso, G.; Meli, F.; Fodale, V.; Calapai, G.; Buemi, M.; Iacopino, D.G. Neuroprotective potential of erythropoietin and darbepoetin alfa in an experimental model of sciatic nerve injury. J. Neurosurg. Spine 2007, 7, 645-651. [CrossRef] [PubMed] 5. Unsgaard G, Ommendal S, Muller T, Gronningsaeter A, Hernes TAN. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery. 2002;50(4): 804-12. 6. Almenawer SA, Badhiwala JH, Alhazzani W, Greenspoon J, Farrokhyar F, Yarascavitch B, et al. Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and metaanalysis. Neuro Oncol. 2015;17(6):868-81. 7. Elserry TH, Anwer H, Radwan HA. Introduction of vaginal probe for intraoperative ultrasound of intra-axial brain lesions. Egyp J Neurosurg. 2013; 28(4):5-12. 8. Zhang ZZ, Shield LBE, Sun DA, Zhang YP, Hunt MA, Christopher BS. The art of intraoperative glioma identification. Front Oncol. 2015;5(175):1-7. 9. Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F, Lango T, Unsgaar

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (ANTICIPATED)

March 1, 2023

Primary Completion (ANTICIPATED)

April 1, 2024

Study Completion (ANTICIPATED)

October 1, 2024

Study Registration Dates

First Submitted

January 21, 2023

First Submitted That Met QC Criteria

January 22, 2023

First Posted (ACTUAL)

February 1, 2023

Study Record Updates

Last Update Posted (ACTUAL)

February 8, 2023

Last Update Submitted That Met QC Criteria

February 3, 2023

Last Verified

January 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

UNDECIDED

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Glioma

Clinical Trials on intraoperative ultrasound

3
Subscribe