Questa pagina è stata tradotta automaticamente e l'accuratezza della traduzione non è garantita. Si prega di fare riferimento al Versione inglese per un testo di partenza.

A Study to Evaluate Corrected QT Interval and Drug-Drug Interaction of Trastuzumab on Carboplatin in the Presence of Docetaxel in Patients With HER2-Positive Metastatic or Locally Advanced Inoperable Cancer

5 novembre 2015 aggiornato da: Genentech, Inc.

A Phase 1b, Single-arm, Open-label Clinical Trial to Evaluate Corrected QT Interval and Drug-drug Interaction of Trastuzumab on Carboplatin in the Presence of Docetaxel in Patients With Metastatic Cancer

This Phase Ib, multicenter, single-arm, open-label study is designed to evaluate the effect of trastuzumab on QTcF interval and to characterize the effects of trastuzumab on carboplatin pharmacokinetics in patients with HER2-positive metastatic or locally advanced inoperable cancer.

The QT interval is a measure of time between the start of the Q wave and the end of the T wave in the heart's electrical cycle. The QTcF interval is the QT interval as calculated using Fridericia's correction; the QTcB interval is the QT interval as calculated using Bazett's correction.

Panoramica dello studio

Stato

Completato

Condizioni

Tipo di studio

Interventistico

Iscrizione (Effettivo)

59

Fase

  • Fase 1

Contatti e Sedi

Questa sezione fornisce i recapiti di coloro che conducono lo studio e informazioni su dove viene condotto lo studio.

Luoghi di studio

    • Arizona
      • Scottsdale, Arizona, Stati Uniti, 85258
    • California
      • Beverly Hills, California, Stati Uniti, 90211
      • La Jolla, California, Stati Uniti, 92093
      • San Diego, California, Stati Uniti, 92123
      • Santa Rosa, California, Stati Uniti, 95403
      • Whittier, California, Stati Uniti, 90603
    • Florida
      • Miami, Florida, Stati Uniti, 33136
    • Kansas
      • Wichita, Kansas, Stati Uniti, 67214-3728
    • Montana
      • Billings, Montana, Stati Uniti, 59101
    • New Mexico
      • Farmington, New Mexico, Stati Uniti, 87401
    • New York
      • Bronx, New York, Stati Uniti, 10461
    • Tennessee
      • Memphis, Tennessee, Stati Uniti, 38120
      • Nashville, Tennessee, Stati Uniti, 37232
    • Texas
      • Dallas, Texas, Stati Uniti, 75230
      • Galveston, Texas, Stati Uniti, 77555
      • Houston, Texas, Stati Uniti, 77030
      • Houston, Texas, Stati Uniti, 77024
      • San Antonio, Texas, Stati Uniti, 78229
      • Temple, Texas, Stati Uniti, 76508
    • Washington
      • Seattle, Washington, Stati Uniti, 98101

Criteri di partecipazione

I ricercatori cercano persone che corrispondano a una certa descrizione, chiamata criteri di ammissibilità. Alcuni esempi di questi criteri sono le condizioni generali di salute di una persona o trattamenti precedenti.

Criteri di ammissibilità

Età idonea allo studio

18 anni e precedenti (Adulto, Adulto più anziano)

Accetta volontari sani

No

Sessi ammissibili allo studio

Tutto

Descrizione

Inclusion Criteria:

  • Histologic documentation of a HER2-positive solid malignancy in patients with metastatic or locally advanced inoperable disease
  • Left ventricular ejection fraction (LVEF) >/= 50% by multiple-gated acquisition (MUGA) scan or two-dimensional echocardiography (ECHO) </= 42 days prior to Cycle 1, Day 1

Exclusion Criteria:

  • History of trastuzumab treatment </= 100 days prior to Cycle 1, Day 1
  • Pretreatment QTcF interval > 450 ms as determined by local assessment

Piano di studio

Questa sezione fornisce i dettagli del piano di studio, compreso il modo in cui lo studio è progettato e ciò che lo studio sta misurando.

Come è strutturato lo studio?

Dettagli di progettazione

  • Scopo principale: Trattamento
  • Assegnazione: N / A
  • Modello interventistico: Assegnazione di gruppo singolo
  • Mascheramento: Nessuno (etichetta aperta)

Armi e interventi

Gruppo di partecipanti / Arm
Intervento / Trattamento
Sperimentale: 1
Dose ripetuta per via endovenosa
Intravenous repeating dose
Intravenous repeating dose

Cosa sta misurando lo studio?

Misure di risultato primarie

Misura del risultato
Misura Descrizione
Lasso di tempo
Change From Baseline in Corrected QT Interval Using Fridericia's Correction (QTcF) at Trastuzumab Steady State
Lasso di tempo: Baseline, Cycle 1 Day 8 and Cycle 2 Day 1
Triplicate 12-lead electrocardiogram (ECG) measurements (each recording separated by approximately 2 minutes) were performed and average was calculated. The time corresponding to beginning of depolarization to repolarization of the ventricles (QT interval) was adjusted for RR interval using QT and RR from each ECG by Fridericia's formula (QTcF = QT divided by cube root of RR). Trastuzumab steady state was defined as the average of the 2 ECG measurements collected on Cycle 1 Day 8 (C1D8) and Cycle 2 Day 1 (C2D1) after the trastuzumab infusion.
Baseline, Cycle 1 Day 8 and Cycle 2 Day 1
Maximum Observed Plasma Concentration (Cmax) of Carboplatin
Lasso di tempo: 0 to 5 minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
0 to 5 minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Area Under the Curve From Time Zero to 6 Hours Post Infusion (AUC0-6hr) of Carboplatin
Lasso di tempo: 0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
AUC0-6hr = Area under the plasma concentration versus time curve from 0 to 6 hours post-infusion.
0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Dose-Normalized Cmax (Cmax/D) of Carboplatin
Lasso di tempo: 0 to 5 minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Dose normalized Cmax is the maximum observed concentration of carboplatin in plasma normalized for different dose levels.
0 to 5 minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Geometric Mean Ratio of Cmax/D of Carboplatin
Lasso di tempo: 0 to 5 minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
The geometric mean ratio of Cmax of carboplatin was defined as the Cmax/D of carboplatin on Cycle 1 Day 1 (in the absence of trastuzumab) divided by Cmax/D of carboplatin on Cycle 2 Day 1 (in the presence of trastuzumab).
0 to 5 minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Dose-Normalized AUC0-6hr (AUC0-6hr/D) of Carboplatin
Lasso di tempo: 0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
AUC0-6hr/D = Area under the plasma concentration versus time curve from 0 to 6 hours post-infusion, normalized by carboplatin dose level.
0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Geometric Mean Ratio of AUC0-6hr/D of Carboplatin
Lasso di tempo: 0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
The geometric mean ratio of AUC0-6hr/D of carboplatin was defined as the AUC0-6hr/D of carboplatin on Cycle 1 Day 1 (in the absence of trastuzumab) divided by AUC0-6hr/D of carboplatin on Cycle 2 Day 1 (in the presence of trastuzumab).
0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Plasma Decay Half-Life (t1/2) of Carboplatin
Lasso di tempo: 0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Plasma decay half-life is the time measured for the plasma concentration to decrease by one half.
0 to 5, 60 (±5), 120 (±10), 240 (±10), and 360 (±15) minutes after end of infusion on Cycle 1 Day 1 (in absence of trastuzumab) and Cycle 2 Day 1 (in presence of trastuzumab)
Maximum Observed Serum Concentration (Cmax) of Trastuzumab
Lasso di tempo: 30 (±15) minutes after the end of the infusion on Cycle 1 Day 2, Cycle 1 Day 8, Cycle 2 Day 1, and Cycle 3 Day 1
30 (±15) minutes after the end of the infusion on Cycle 1 Day 2, Cycle 1 Day 8, Cycle 2 Day 1, and Cycle 3 Day 1
Minimum Observed Serum Trough Concentration (Cmin) of Trastuzumab
Lasso di tempo: 15 (±15) minutes prior to the start of the trastuzumab infusion on Cycle 1 Day 2, Cycle 1 Day 8, Cycle 2 Day 1, and Cycle 3 Day 1
15 (±15) minutes prior to the start of the trastuzumab infusion on Cycle 1 Day 2, Cycle 1 Day 8, Cycle 2 Day 1, and Cycle 3 Day 1

Misure di risultato secondarie

Misura del risultato
Misura Descrizione
Lasso di tempo
Change From Baseline in Corrected QT Interval Using Bazett's Correction (QTcB) at Trastuzumab Steady State
Lasso di tempo: Baseline, Cycle 1 Day 8 and Cycle 2 Day 1
Triplicate 12-lead ECG measurements (each recording separated by approximately 2 minutes) were performed and average was calculated. The time corresponding to beginning of depolarization to repolarization of the ventricles (QT interval) was adjusted for RR interval using QT and RR from each ECG by Bazette's formula (QTcB = QT divided by square root of RR). Trastuzumab steady state was defined as the average of the 2 ECG measurements collected on Cycle 1 Day 8 and Cycle 2 Day 1 after the trastuzumab infusion.
Baseline, Cycle 1 Day 8 and Cycle 2 Day 1
Baseline-adjusted QTcF, QTcB, PR Interval, and QRS Duration
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
For each postbaseline timepoint, a participant's corresponding baseline measure was subtracted from his or her average of the triplicate ECG measure to create a "baseline-adjusted" corresponding ECG measure for each participant at each postbaseline timepoint.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Baseline-adjusted Heart Rate
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
For each postbaseline timepoint, a participant's corresponding baseline heart rate was subtracted from his or her average of the triplicate heart rate to create a "baseline-adjusted" corresponding heart rate for each participant at each postbaseline timepoint.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Number of Participants Within Each Absolute QTc Interval Category
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Triplicate 12-lead ECG measurements (each recording separated by approximately 2 minutes) were performed and average was calculated. The time corresponding to beginning of depolarization to repolarization of the ventricles (QT interval) was adjusted for RR interval using QT and RR from each ECG by Fridericia's formula (QTcF = QT divided by cube root of RR) and by Bazette's formula (QTcB = QT divided by square root of RR). Participants with maximum QTc less than or equal to (<=) 450 msec, greater than (>) 450 to <=470 msec, >470 to <= 500 msec, or >500 msec were reported.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Number of Participants With Increase From Baseline in QTc Interval
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Triplicate 12-lead ECG measurements (each recording separated by approximately 2 minutes) were performed and average was calculated. The time corresponding to beginning of depolarization to repolarization of the ventricles (QT interval) was adjusted for RR interval using QT and RR from each ECG by Fridericia's formula (QTcF = QT divided by cube root of RR) and by Bazette's formula (QTcB = QT divided by square root of RR). Participants with maximum increase from baseline of =>30msec, 30 to <60 msec (borderline) and >=60 msec (prolonged) were summarized.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Number of Participants With New Abnormal U Waves on ECG
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
The incidence of abnormal U-wave changes from baseline was determined based on centrally read ECG tracings comparing each of the three triplicate readings from the post baseline ECG time points to the baseline ECG reading. At each time point, if at least one of the three triplicate readings was abnormal, the participant was counted as abnormal for that ECG timepoint as follows: a large U wave, inverted U wave, or T-U fusion compared with baseline was considered an abnormal significant change from baseline.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Number of Participants With New Abnormal T Waves on ECG
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
The incidence of abnormal T-wave changes from baseline was determined based on centrally read ECG tracings comparing each of the three triplicate readings from the post baseline ECG time points to the baseline ECG reading. At each time point, if at least one of the three triplicate readings was abnormal, the participant was counted as abnormal for that ECG timepoint as follows: an inverted T, flat T, or biphasic T compared with baseline was considered an abnormal significant change from baseline. Additionally, nonspecific T-wave changes from baseline were considered as abnormal nonsignificant changes from baseline. T-wave changes from baseline due to ventricular conduction or left ventricular hypertrophy strain were considered not evaluable.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Number of Participants With Abnormal Changes in PR Interval
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Criteria for abnormal changes in PR interval were defined as: =>25 percentage (%) change from baseline, an absolute value >200 msec, or >=25% change from baseline and an absolute value >200 msec.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Number of Participants With Abnormal Changes in QRS Interval
Lasso di tempo: Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Criteria for abnormal changes in QRS interval were defined as: >=25% change from baseline, an absolute value >110 msec, or >=25% change from baseline and an absolute value >110 msec.
Baseline, Cycle 1 Day 2 (30 minutes postdose), Cycle 1 Day 8 (15 minutes predose), Cycle 1 Day 8 (30 minutes postdose), Cycle 2 Day 1 (15 minutes predose), and Cycle 2 Day 1 (30 minutes postdose)
Population Pharmacokinetics of Trastuzumab
Lasso di tempo: 15 (±15) minutes prior to the start of the trastuzumab infusion, and 30 (±15) minutes after the end of the infusion on Cycle 1 Day 2, Cycle 1 Day 8, Cycle 2 Day 1, and Cycle 3 Day 1
As per planned analysis, separate population pharmacokinetic analysis results are not available for the current study as this analysis is based on pooled data from multiple studies.
15 (±15) minutes prior to the start of the trastuzumab infusion, and 30 (±15) minutes after the end of the infusion on Cycle 1 Day 2, Cycle 1 Day 8, Cycle 2 Day 1, and Cycle 3 Day 1

Collaboratori e investigatori

Qui è dove troverai le persone e le organizzazioni coinvolte in questo studio.

Sponsor

Investigatori

  • Direttore dello studio: Harald Weber, M.D., Genentech, Inc.

Studiare le date dei record

Queste date tengono traccia dell'avanzamento della registrazione dello studio e dell'invio dei risultati di sintesi a ClinicalTrials.gov. I record degli studi e i risultati riportati vengono esaminati dalla National Library of Medicine (NLM) per assicurarsi che soddisfino specifici standard di controllo della qualità prima di essere pubblicati sul sito Web pubblico.

Studia le date principali

Inizio studio

1 luglio 2009

Completamento primario (Effettivo)

1 febbraio 2013

Completamento dello studio (Effettivo)

1 febbraio 2013

Date di iscrizione allo studio

Primo inviato

24 giugno 2009

Primo inviato che soddisfa i criteri di controllo qualità

24 giugno 2009

Primo Inserito (Stima)

25 giugno 2009

Aggiornamenti dei record di studio

Ultimo aggiornamento pubblicato (Stima)

10 dicembre 2015

Ultimo aggiornamento inviato che soddisfa i criteri QC

5 novembre 2015

Ultimo verificato

1 novembre 2015

Maggiori informazioni

Termini relativi a questo studio

Queste informazioni sono state recuperate direttamente dal sito web clinicaltrials.gov senza alcuna modifica. In caso di richieste di modifica, rimozione o aggiornamento dei dettagli dello studio, contattare register@clinicaltrials.gov. Non appena verrà implementata una modifica su clinicaltrials.gov, questa verrà aggiornata automaticamente anche sul nostro sito web .

Prove cliniche su Tumori solidi

Prove cliniche su carboplatino

3
Sottoscrivi