このページは自動翻訳されたものであり、翻訳の正確性は保証されていません。を参照してください。 英語版 ソーステキスト用。

CHAMPS Eye Study - Myopia and Retinal Vascular Geometry in Relation to Physical Activity

2017年4月3日 更新者:Kristian Lundberg、Odense University Hospital

CHAMPS Eye Study - Myopia and Retinal Vascular Geometry in Relation to Physical Activity.

An increasingly physical inactive lifestyle in the Western World has led to a higher number of lifestyle -related diseases. The consequences are now already present in childhood with an increased prevalence of overweight, obesity, and diabetes. Inactivity is also accompanied by cardiovascular iseases and is also thought to be associated with an increased incidence of nearsightedness (myopia).

Myopia is the most frequent eye disease globally, and causes severe personal and societal expenses and may additionally lead to secondary eye disorders such as retinal detachment, glaucoma, and cataract.

The retina is the only place in the human body where it is possible to directly inspect the blood vessels (microvasculature). Photography of the eye background allows a noninvasive examination of the retinal structure in which it is possible to make measurements on the retinal blood vessels.

It is well known that early vascular chances can be detected with this method and that there are correlation between these changes and systemic diseases, such as hypertension, stroke and other cardiovascular diseases.

This study is a new subproject in The Childhood Health, Activity, and Motor Performance School (CHAMPS) Study Denmark, also known as the Svendborg Project. The project has a well-defined cohort with originally 1515 school students who since 2007 have been divided into two groups: schools with extra exercise during school hours and matched traditional schools. CHAMPS-DK aims to investigate the effect of increased physical activity on current and future health of children and adolescents.

Thanks to this unique child cohort it is possible to investigate the correlation between physical activity, myopia and retinal vascular diameters in a large group of Danish schoolchildren. We want to study the degree and reversibility of physical activity and its effect on the development of myopia and retinal blood vessel changes. However, there is still a lack of knowledge about the correlation between physical activity and retinal vascular diameters in children. Furthermore, it is still unclear whether physical activity can prevent the development of myopia; such a realization could have far-reaching consequences in form of a modified approach to the necessity for exercise and, furthermore, potentially a significant socio-economic benefit.

調査の概要

状態

完了

詳細な説明

Introduction Increasingly physical inactive lifestyle in the western world has led to an increase in life style related diseases. The consequences are now already present in childhood with an increased prevalence of overweight, obesity and diabetes. Inactivity is also accompanied by cardiovascular diseases and is also thought to be associated with an increased incidence of near sightedness (myopia).

Myopia is the world's most occurring eye disease, and is usually caused by increasing length growth of the eye. Myopia in itself leads to great personal and societal costs and in addition it also lead to secondary eye disorders such as retinal detachment, glaucoma and cataract. The growth of the eye length is principally developed until mid-childhood, witch is why it is these years witch is most valuable to investigate the underlying factors of the development of myopia.

The prevalence of myopia has increased significantly the recent decades, without a known cause. Particularly in Asia, there has been a very high and dramatically increasing prevalence of myopia - in some urbanized areas up to 80-90% among children in the final year of primary school people.

Myopia is caused by a combination of genetic and environmental factors. Lifestyle changes such as reduced physical activity and more close-up work is thought to of great importance.4 Conversely, there is also evidence of a possible protective effect of outdoor presence in the development of myopia. We do not kwow if the protective effect is due to the total time spent outdoors per se or the increased physical activity, although a small study describe a slower development and lower degrees of myopia in children who used more time on outdoor activities and sports than children in a control group. In addition a Danish study of college students (physical education students -vs. medical students) found an association between physical activity, student activity and myopia suggesting a preventive effect of physical activity and less intense study activity on the development and progression of myopia.

It is still unclear whether physical activity can prevent the development of myopia - a such realization could have far-reaching consequences in form of a modified approach to the necessity for exercise and a consequent significant socio-economic benefit.

The retina is the only place in the human body where it is possible to directly inspect the microvasculature. Photography of the eye background (fundus photography) is a non-invasive examination of the retinal structure in which it is possible to make measurements on the retinal blood vessels. Semi automated measurements of retinal vascular diameters is a simple and validated method to examine the retinal system.

Several large studies have shown a correlation between retinal vessel diameters and systemic diseases such as hypertension, stroke and other cardiovascular diseases in adults. Furthermore, studies also demonstrate retinal vascular changes in children comparable to the changes in adults , including thinner retinal arteries in children with hypertension.

Blood pressure levels are significantly increased among children and adolescents over the last ten years, which can be related to an increase in obesity. There is also a correlation between a physically inactive lifestyle and obesity. High blood pressure in children and adolescence leads to increased risk of cardiovascular disease risk later on in life , including the development of early atherosclerosis .

There is still missing considerable knowledge about the correlation between physical activity and retinal vascular diameters in children. By being able to identify retinal vessel diameters as a risk factor marker for later development of cardiovascular disease, it will be possible at an early stage to identify those children who will benefit from targeted preventional efforts.

Using a unique child cohort we want to investigate the correlation between physical activity, myopia and retinal vascular diameters in a large group of Danish schoolchildren. We will study the degree and reversibility of physical activity and its effect in the development of myopia and retinal vasculopathy.

The study - material The current study is a new subproject in The Childhood Health, Activity, and Motor Performance School (CHAMPS) Study Denmark. CHAMPS-DK aims to investigate the effect of increased physical activity on current and future health of children and adolescents.

In 2007, the city council in Svendborg took the decision to provide increased levels of suitable physical activities in some of their primary schools, with the aim to improve the physical health of children. Before starting the Svendborg Project, all 19 primary schools in Svendborg were invited, of which six choose to participate. A committee consisting of school principals and physical education teachers from these schools made a proposal based on Team Denmark training concept for children.

The project has a well-defined cohort with originally 1515 school students who since 2007 has been divided into two groups: 775 in the six schools with extra exercise during school hours and 750 in six matched traditional schools. The six sports schools introduced 6 hours of sport per week versus a normal hour for sport at 2 hours a week.

Students have so far been followed for six years and researchers from Hans Christian Andersen Children's Hospital, University Hospital and Centre of Research in Childhood Health (RICH), SDU has studied the effect of physical activity on lifestyle diseases, back problems, sports injuries, etc.

Students - initially aged 6 to 10 years - are followed and studied in a variety of areas. At baseline were made surveys, demographic data collected, objective tests, physical and biological tests, including DEXA scans and blood tests. In addition, visual data on each student from healthcare study at school start are noted, so that it possible to determine who was myopic at that time.

Each week throughout the study period, students and parents answered a text message with questions about the student's leisure- and sports activities, duration and type, and whether any problems encountered in the musculoskeletal system. In addition, twice a year, data on health habits, physical objective measures, balance, endurance capacity, bone status, lifestyle diseases, injuries and musculoskeletal problems has been collected.

For some periods students are equipped with an accelerometer - a device that can objectively measure the amount and degree of physical activity. With data collection from the weekly SMS updates and continuous measurements with the accelerometer, it is possible all the time to know each student's precise level of exercise and have a detailed knowledge of the student's physical form.18,

Purpose The project serves to investigate the effect physical activity has on 1) the development of myopia and 2) the retinal vascular geometry, including whether the latter can be used as a marker for cardiovascular risk in children.

With this project, we also strive to promote research cooperation across the departments at Odense University Hospital and the Research Unit of Ophthalmology, Institute of Clinical Research and RICH.

Hypothesis

We expect that physical activity has a protective effect against myopia as well as retinal vasculopathy and make the following hypothesis:

  1. Physical activity - especially outdoor activity - is associated with less myopia in children of school age
  2. Physical activity is associated with more optimal retinal vascular diameters and therefore a more favourable cardiovascular risk profile.

Method

  1. The study is conducted as a cross-sectional study aimed to associate the current level of physical activity (assessed by self-report and accelerometer) with 1) the degree of myopia and 2) the retinal vascular diameters.
  2. The study will also be a follow-up of the baseline data collected from the cohort at school start, where school nurse measurements (and later reference to practicing ophthalmologists) has been possible to identify students who was already myopic. This makes it possible to create a longitudinal assessment of the degree of myopia in the study.

Data collection

In the spring 2015, 700 of the enrolled students (currently in 7th-10th grade) in the CHAMPS study will be called for examination at Odense University Hospital, where the following data is collected:

Non ophthalmological data:

Age, sex, weight, height, cardiovascular risk factors (lipid status, DEXA scans, vitamin D), physical status and outdoor level (assessed from type of school, SMS reporting and accelerometer).

Ophthalmological data:

Visus (ETDRS), autorefraction in cycloplegia, refractional status (axis length, k-number), tonometry, fundus photography (vascular diameter) and spectral-domain optical koherens tomography (SD-OCT).

Analysis and data processing In the study retinal photographs and OCT are recorded a fundus camera (Topcon 3D OCT, Tokyo, Japan). To measure and analyse the retinal vessels a semi-automated computer program (IVAN) is used. It can give numerous information and calculate the diameters of arterioles and venules.

Power calculation The study will have a fixed cohort of 700 students. In order to ensure that there is enough power to investigate the anticipated correlations, the following power calculations are made (SigmaPlot, version 12, Systat Software Inc., San Jose, California, United States).

Visus: Requires the inclusion of at least 64 students in order to detect a difference of 5 ETDRS letters with the following assumptions: normal distribution, statistical power: 80% significance level (α): 5%, standard deviation (SD): 10 ETDRS letters.

Refraction: Requires the inclusion of at least 194 students to detect a difference 0.50 diopter (power: 80%, α = 5%, SD = 1.75D).

Arteriolar vascular diameter: Requires the inclusion of at least 125 students to detect a change of 5 microns (power: 80%, α: 5%, SD = 14 microns).

Overall the cohort meets the requirements.

Perspectives The study may later form the basis for a follow-up study in which the present investigations may constitute the baseline data for a longitudinal study to investigate 1) the role of physical activity in the final development of myopia in the cohort and 2) the correlation of retinal vascular diameter status to later development of cardiovascular disease.

研究の種類

介入

入学 (実際)

307

段階

  • 適用できない

参加基準

研究者は、適格基準と呼ばれる特定の説明に適合する人を探します。これらの基準のいくつかの例は、人の一般的な健康状態または以前の治療です。

適格基準

就学可能な年齢

  • 大人
  • 高齢者

健康ボランティアの受け入れ

いいえ

受講資格のある性別

全て

説明

Inclusion Criteria:

  • Children from the The Childhood Health, Activity, and Motor Performance School Study Denmark (The CHAMPS-study DK) cohord.

Exclusion Criteria:

  • None

研究計画

このセクションでは、研究がどのように設計され、研究が何を測定しているかなど、研究計画の詳細を提供します。

研究はどのように設計されていますか?

デザインの詳細

  • 主な目的:防止
  • 割り当て:なし
  • 介入モデル:単一グループの割り当て
  • マスキング:なし(オープンラベル)

武器と介入

参加者グループ / アーム
介入・治療
実験的:Physical activity
Subject from schools with more physical activity.
Subjects receiving more physical activity in school.

この研究は何を測定していますか?

主要な結果の測定

結果測定
メジャーの説明
時間枠
Myopic status in relation to physical activity (longitudinal data on physical activity)
時間枠:7 years
Myopic status in relation to longitudinal data on physical activity
7 years

二次結果の測定

結果測定
メジャーの説明
時間枠
Retinal vessel geometry (caliber)
時間枠:None (analyzes on data from tests in march to july 2015, 4 months)

Cross-sectional results.

Change in vessel geometry:

Caliber: Using computerised software - IVAN.

None (analyzes on data from tests in march to july 2015, 4 months)
Choroidal thickness
時間枠:None (analyzes on data from tests in march to july 2015, 4 months)
Cross-sectional results. Using Enhanced Depth Imaging Spectral Domain Optical Coherence Tomography
None (analyzes on data from tests in march to july 2015, 4 months)
Myopic status (data from tests in spring 2015)
時間枠:None (analyzes on data from tests in march to july 2015, 4 months)
Cross-sectional results
None (analyzes on data from tests in march to july 2015, 4 months)
Myopia development
時間枠:10 years. Changes from baseline.
Cross-sectional results compared with date from baseline
10 years. Changes from baseline.

協力者と研究者

ここでは、この調査に関係する人々や組織を見つけることができます。

スポンサー

捜査官

  • 主任研究者:Kristian Lundberg, MD、Department of Ophthalmology, Odense University Hospital

出版物と役立つリンク

研究に関する情報を入力する責任者は、自発的にこれらの出版物を提供します。これらは、研究に関連するあらゆるものに関するものである可能性があります。

一般刊行物

研究記録日

これらの日付は、ClinicalTrials.gov への研究記録と要約結果の提出の進捗状況を追跡します。研究記録と報告された結果は、国立医学図書館 (NLM) によって審査され、公開 Web サイトに掲載される前に、特定の品質管理基準を満たしていることが確認されます。

主要日程の研究

研究開始 (実際)

2015年2月1日

一次修了 (実際)

2017年4月1日

研究の完了 (実際)

2017年4月1日

試験登録日

最初に提出

2015年1月9日

QC基準を満たした最初の提出物

2015年1月23日

最初の投稿 (見積もり)

2015年1月26日

学習記録の更新

投稿された最後の更新 (実際)

2017年4月4日

QC基準を満たした最後の更新が送信されました

2017年4月3日

最終確認日

2017年4月1日

詳しくは

本研究に関する用語

追加の関連 MeSH 用語

その他の研究ID番号

  • CES 001

この情報は、Web サイト clinicaltrials.gov から変更なしで直接取得したものです。研究の詳細を変更、削除、または更新するリクエストがある場合は、register@clinicaltrials.gov。 までご連絡ください。 clinicaltrials.gov に変更が加えられるとすぐに、ウェブサイトでも自動的に更新されます。

子の臨床試験

More physical activity.の臨床試験

3
購読する