Tato stránka byla automaticky přeložena a přesnost překladu není zaručena. Podívejte se prosím na anglická verze pro zdrojový text.

3D Free-Breathing Multi-echo Acquisition for Whole-body Water/Fat Separation

26. května 2022 aktualizováno: Milton S. Hershey Medical Center

3D Free-Breathing Multi-echo Acquisition for Whole-body Water/Fat Separation Utilizing DIXON Method

The purpose of this study is to help researchers develop MRI imaging techniques that can provide better information for using MRI to treat cancer. MRI is a non-invasive technique that uses magnetic fields and radio waves to create images of the inside of the body.

The investigators of this study are developing an MRI imaging technique that will help with treatment planning for cancer patients. Specifically, the method investigating will help to calculate how the dose the patient needs to treat his/her/their cancer is distributed. This information is required for prescribing the dose to the patient for their cancer treatment.

Přehled studie

Postavení

Staženo

Detailní popis

Combined magnetic resonance and linear accelerator systems (MR-Linac systems) are a powerful new cancer treatment modality. MR-Linac systems promise improved patient outcomes and decreased side effects compared to conventional radiation therapy (RT) systems. These systems yield exquisite soft tissue imaging, offer imaging during RT delivery, and provide a platform for adaptive RT. However, unlike traditional RT planning with computed tomography (CT) measured in Hounsfield units, the MR signal does not correlate with electron density. Electron density information is required to calculate radiation dose maps for RT planning for adaptive RT.

The MRIdian MR-Linac is a low-field system (0.35 Tesla), which is beneficial for applications in RT because it has less effect on the radiation beam than higher field systems. However, low-field MR systems have imaging challenges compared to high-field MR systems. The resonant frequencies between water and fat at 0.35 Tesla are close and traditional methods of separating these tissues (i.e., DIXON-based methods) are more difficult. Furthermore, spectral-selection of fat is not possible, which means traditional fat saturation methods cannot be used at 0.35T. Currently, neither a fat-saturation sequence nor a multi-echo sequence for fat/water separation is available on the MRIdian MR-Linac system. We propose to implement and test a fat/water separation technique optimized for 0.35T. This sequence will enable sCT generation for MR-only simulation (i.e., RT planning without CT) and adaptive RT.

The original DIXON technique for water/fat separation depends on two signal acquisitions - when the fat and water spins are in-phase and opposed-phase. New DIXON methods are more flexible and enable fat/water separation at echo times that are not directly in- and opposed-phase. At 0.35T, the fat and water spins are slow enough that the first echo (i.e., shortest echo) is a near-in-phase echo. Additional echoes will support a 3-point DIXON reconstruction and B0 mapping for inhomogeneity correction.

The long-term goal of this study is to realize the benefits of MR-guided adaptive RT to decrease toxicity and improve patient outcomes. The specific objective of this study is to develop an MR sequence on the low-field MR-Linac for fat/water separation. For the purposes of Radiation Oncology, multi-echo gradient-echo is a fast method to acquire a 3D stack with a large FOV. The images can be reconstructed using a DIXON-based method to produce multiple image types. The resulting images can be used for sCT, which could greatly assist with auto-contouring methods and adaptive planning on MR-Linac systems. These images are also diagnostically used for functional imaging, specifically Dynamic contrast-enhanced imaging (DCE-MRI), which has shown promise at low field, as well as a non-contrast method magnetic resonance angiography (MRA).

Producing these images requires chemical shift imaging. At low fields, chemical shift imaging is difficult as the spectra of fat and water are very close (52 Hz @ 0.35T as compared to 224 Hz @ 1.5T). Traditional DIXON methods use out-of-phase and in-phase echo times (TEs) to separate fat and water. At 0.35T, these TEs are 9.86ms and 19.7ms, respectively. However, long TEs degrade the signal-to-noise ratio (SNR) and lead to long imaging times, particularly for 3D stacks. In addition, B0 inhomogeneity increases and SNR degrades with longer TEs.

The hypothesis is that at 0.35T, the fat and water spins are slow enough that the first echo (i.e., shortest echo, approximately 1ms) is a near-in-phase echo. Additional echoes will support a 3-point DIXON reconstruction and B0 mapping for inhomogeneity correction. I predict that once this multi-echo gradient echo sequence is implemented on the MRIdian system, it can be used to acquire images that will successfully produce water-only, fat-only, in-phase and opposed-phase images.

Typ studie

Pozorovací

Kritéria účasti

Výzkumníci hledají lidi, kteří odpovídají určitému popisu, kterému se říká kritéria způsobilosti. Některé příklady těchto kritérií jsou celkový zdravotní stav osoby nebo předchozí léčba.

Kritéria způsobilosti

Věk způsobilý ke studiu

18 let až 100 let (Dospělý, Starší dospělý)

Přijímá zdravé dobrovolníky

Ne

Pohlaví způsobilá ke studiu

Všechno

Metoda odběru vzorků

Ukázka pravděpodobnosti

Studijní populace

Healthy volunteers from the local community

Popis

Inclusion Criteria:

  • 1. Any male or non pregnant female age ≥18 but ≤ 100 who is capable of giving informed consent.

Exclusion Criteria:

  • 1. A subject will be excluded if he/she/they has/have a contraindication to MR scanning based on screening. Examples of contraindications include:

    1. Aneurysm clip
    2. Implanted neural stimulator
    3. Implanted cardiac pacemaker or auto-defibrillator
    4. Cochlear implant
    5. Ocular foreign body (e.g., metal shavings)
    6. Any implanted device (pumps, infusion devices, etc)
    7. Shrapnel injuries 2. Subjects will be excluded if it is deemed that he/she/they has/have a condition which would preclude use for technical development (e.g. morbid obesity, claustrophobia, etc.) or present unnecessary risks (e.g. pregnancy, surgery of uncertain type, implant etc.).

Studijní plán

Tato část poskytuje podrobnosti o studijním plánu, včetně toho, jak je studie navržena a co studie měří.

Jak je studie koncipována?

Detaily designu

  • Observační modely: Kohorta
  • Časové perspektivy: Budoucí

Kohorty a intervence

Skupina / kohorta
An MR pulse sequence developing on the MRIdian system
This a pilot study to assess and optimize an MR pulse sequence that we are developing on the MRIdian system. It is a single-center trial recruiting only normal volunteers. Volunteers may be grouped by anatomic region of assessment.

Co je měření studie?

Primární výstupní opatření

Měření výsledku
Popis opatření
Časové okno
MR acquisition and reconstruction
Časové okno: 90 minutes
MR methods will be tested in phantoms and then volunteers. Each volunteer will provide images for up to 5 anatomies. When any anatomy has 3 consecutive imaging sessions that meet qualitative metrics for image quality (absence of artifacts), image contrast (proper weighting MR image) and tissue classification (fat/water separation), approval by the Radiation Oncologist will be sought. The project will be complete when all 5 anatomies have obtained approval.
90 minutes

Spolupracovníci a vyšetřovatelé

Zde najdete lidi a organizace zapojené do této studie.

Vyšetřovatelé

  • Vrchní vyšetřovatel: Melanie Traughber, DSc, Penn State Cancer Institute

Termíny studijních záznamů

Tato data sledují průběh záznamů studie a předkládání souhrnných výsledků na ClinicalTrials.gov. Záznamy ze studií a hlášené výsledky jsou před zveřejněním na veřejné webové stránce přezkoumány Národní lékařskou knihovnou (NLM), aby se ujistily, že splňují specifické standardy kontroly kvality.

Hlavní termíny studia

Začátek studia (Očekávaný)

22. ledna 2022

Primární dokončení (Očekávaný)

1. ledna 2024

Dokončení studie (Očekávaný)

1. ledna 2024

Termíny zápisu do studia

První předloženo

6. října 2021

První předloženo, které splnilo kritéria kontroly kvality

20. října 2021

První zveřejněno (Aktuální)

29. října 2021

Aktualizace studijních záznamů

Poslední zveřejněná aktualizace (Aktuální)

1. června 2022

Odeslaná poslední aktualizace, která splnila kritéria kontroly kvality

26. května 2022

Naposledy ověřeno

1. ledna 2022

Více informací

Termíny související s touto studií

Klíčová slova

Další identifikační čísla studie

  • 21-129

Plán pro data jednotlivých účastníků (IPD)

Plánujete sdílet data jednotlivých účastníků (IPD)?

Ne

Informace o lécích a zařízeních, studijní dokumenty

Studuje lékový produkt regulovaný americkým FDA

Ne

Studuje produkt zařízení regulovaný americkým úřadem FDA

Ne

Tyto informace byly beze změn načteny přímo z webu clinicaltrials.gov. Máte-li jakékoli požadavky na změnu, odstranění nebo aktualizaci podrobností studie, kontaktujte prosím register@clinicaltrials.gov. Jakmile bude změna implementována na clinicaltrials.gov, bude automaticky aktualizována i na našem webu .

Klinické studie na Zdravý dobrovolník

3
Předplatit