Denne side blev automatisk oversat, og nøjagtigheden af ​​oversættelsen er ikke garanteret. Der henvises til engelsk version for en kildetekst.

Tart Cherry Juice for Exercise Performance and Recovery

27. juni 2018 opdateret af: Phil Chilibeck, University of Saskatchewan

The Effect of Tart Cherry Juice on Fat Metabolism, Exercise Performance, and Recovery

This study evaluates the effects of tart cherry juice consumption on endurance exercise performance, fat metabolism during exercise, blood pressure, and recovery from exercise as assessed by muscle pain, muscle strength and electrical properties of muscle. Comparisons will be made to Gatorade consumption. Participants include those who are moderately active and have experience with cycling.

Studieoversigt

Status

Afsluttet

Betingelser

Intervention / Behandling

Detaljeret beskrivelse

Tart cherries are rich in bioactive components (i.e. flavonoids) that have anti-inflammatory and anti-oxidant properties. Inflammation and lipid peroxidation causes damage of skeletal muscle membranes during intense exercise. The damage of muscle increases the amount of time for muscle to recover from intense exercise, and can cause muscle strength to be reduced for days. When tart cherries in a concentrated form (i.e. as juice or powder) are consumed in the days leading up to intense exercise, there is a protective effect against inflammation, and lipid peroxidation . This theoretically prevents damage to the lipid component of muscle fibre membranes and helps to preserve muscle function - when muscle is damaged by intense exercise (i.e. either repetitive aerobic activity or high-force muscle contraction), consumption of cherry juice enhances the rate of muscle strength recovery following exercise compared to when a placebo (i.e. non-cherry) beverage is consumed . Muscle damage may be protected by cherry juice consumption; however, all studies evaluating the protective effect of cherries have assessed muscle damage by measuring muscle proteins in the blood. This rather indirect measure of muscle damage is highly variable and not always an accurate assessment of muscle damage; this may be why some studies indicate a reduction in markers of muscle damage with cherry juice consumption while others do not.

A more direct assessment of muscle damage can be obtained by applying electrical stimulation at different frequencies to a muscle before and after intense exercise and assessing the reduction in force output in response to low-frequency and high-frequency stimulation. After intense exercise, the force output at low frequencies of stimulation is often reduced, while the force output at high frequencies is maintained; a phenomenon termed "low frequency fatigue". When muscle is stimulated to contract (either voluntarily by the nervous system or involuntarily through electrical stimulation) calcium is released inside muscle. This calcium release leads to muscle contraction. When muscle undergoes intense exercise, there is damage to muscle membranes, including membranes inside muscle that are responsible for calcium release. This causes a lower amount of calcium to be released with each muscle contraction. Normally, if high frequencies of electrical stimulation are applied to muscle, a very large amount of calcium is released inside muscle - an amount which is "more than enough" to cause a high amount of muscle contraction and high force output. If muscle fibre membranes responsible for release of calcium are damaged, a lower amount of calcium is released, but because "more than enough" calcium is usually released with high frequency stimulation, the lower amount of calcium released with muscle damage is still enough to cause high force of muscle contraction. The force response to low frequencies of stimulation; however, is dramatically reduced when muscle is damaged - usually only a small amount of calcium is released when low frequencies of stimulation are delivered to muscle. Following muscle damage, the smaller amount of calcium released causes lower force production at low stimulation frequency. Low force production at low stimulation frequencies, with a relatively maintained force production at high stimulation frequencies therefore indicates that muscle damage has occurred. This lower muscle force capability at low frequencies of stimulation has dramatic effects on endurance performance because typical endurance performance relies on repeated low-force muscle contractions, as opposed to the few high-force contractions that might be required in other sports (i.e. short sprinting events or field events such as shot put).

The study we are proposing will use this measurement (i.e. ratio of low frequency force to high frequency force output) as a more direct measure of muscle damage. We predict that if cherry juice is consumed in the days leading up to a bout of muscle-damaging endurance exercise, muscle damage will be lower (as indicated by a faster recovery of low-frequency fatigue following the bout of exercise) than when a comparison-drink (i.e. Gatorade) is consumed.

Undersøgelsestype

Interventionel

Tilmelding (Faktiske)

13

Fase

  • Ikke anvendelig

Kontakter og lokationer

Dette afsnit indeholder kontaktoplysninger for dem, der udfører undersøgelsen, og oplysninger om, hvor denne undersøgelse udføres.

Studiesteder

    • Saskatchewan
      • Saskatoon, Saskatchewan, Canada, S7N 5B2
        • College of Kinesiology, University of Saskatchewan

Deltagelseskriterier

Forskere leder efter personer, der passer til en bestemt beskrivelse, kaldet berettigelseskriterier. Nogle eksempler på disse kriterier er en persons generelle helbredstilstand eller tidligere behandlinger.

Berettigelseskriterier

Aldre berettiget til at studere

18 år og ældre (Voksen, Ældre voksen)

Tager imod sunde frivillige

Ja

Køn, der er berettiget til at studere

Alle

Beskrivelse

Inclusion Criteria:

  • experienced cyclist (i.e. bicycle exercise at a vigorous intensity on a regular basis)

Exclusion Criteria:

  • Allergies to cherries

Studieplan

Dette afsnit indeholder detaljer om studieplanen, herunder hvordan undersøgelsen er designet, og hvad undersøgelsen måler.

Hvordan er undersøgelsen tilrettelagt?

Design detaljer

  • Primært formål: Andet
  • Tildeling: Randomiseret
  • Interventionel model: Crossover opgave
  • Maskning: Tredobbelt

Våben og indgreb

Deltagergruppe / Arm
Intervention / Behandling
Eksperimentel: Tart Cherry Juice
290 mL per day of Tart Cherry juice for 7 days
Beverage to be consumed
Aktiv komparator: Gatorade
290 mL per day of Gatorade for 7 days
Beverage to be consumed

Hvad måler undersøgelsen?

Primære resultatmål

Resultatmål
Foranstaltningsbeskrivelse
Tidsramme
Time time performance
Tidsramme: Day 5 of beverage consumption
Time to complete 10 km of cycling
Day 5 of beverage consumption

Sekundære resultatmål

Resultatmål
Foranstaltningsbeskrivelse
Tidsramme
Fat oxidation
Tidsramme: Day 5 of beverage consumption
Fat oxidation determined from gas analysis
Day 5 of beverage consumption
Carbohydrate oxidation
Tidsramme: Day 5 of beverage consumption
Carbohydrate oxidation determined from gas analysis
Day 5 of beverage consumption
Blood pressure
Tidsramme: Day 5 of beverage consumption
Blood pressure assessed by continuous blood pressure monitor
Day 5 of beverage consumption
Muscle pain
Tidsramme: Change from baseline to before, and immediately, 24 hours, and 48 hours after exercise
Muscle pain determined by a visual analog scale (participant marks a scale from 0 to 100 mm. A score of 0 mm is "no pain". A score of 100 mm is maximal pain).
Change from baseline to before, and immediately, 24 hours, and 48 hours after exercise
Quadriceps strength
Tidsramme: Change from baseline to before, and immediately, 24 hours, and 48 hours after exercise
Knee extensor strength determined by isometric contraction
Change from baseline to before, and immediately, 24 hours, and 48 hours after exercise
Low frequency fatigue
Tidsramme: Change from baseline to before, immediately, 24 hours, and 48 hours after exercise
Measured by force production at low and high stimulation frequencies as an index of muscle damage
Change from baseline to before, immediately, 24 hours, and 48 hours after exercise

Samarbejdspartnere og efterforskere

Det er her, du vil finde personer og organisationer, der er involveret i denne undersøgelse.

Datoer for undersøgelser

Disse datoer sporer fremskridtene for indsendelser af undersøgelsesrekord og resumeresultater til ClinicalTrials.gov. Studieregistreringer og rapporterede resultater gennemgås af National Library of Medicine (NLM) for at sikre, at de opfylder specifikke kvalitetskontrolstandarder, før de offentliggøres på den offentlige hjemmeside.

Studer store datoer

Studiestart (Faktiske)

1. oktober 2017

Primær færdiggørelse (Faktiske)

30. marts 2018

Studieafslutning (Faktiske)

30. april 2018

Datoer for studieregistrering

Først indsendt

13. oktober 2017

Først indsendt, der opfyldte QC-kriterier

13. oktober 2017

Først opslået (Faktiske)

18. oktober 2017

Opdateringer af undersøgelsesjournaler

Sidste opdatering sendt (Faktiske)

28. juni 2018

Sidste opdatering indsendt, der opfyldte kvalitetskontrolkriterier

27. juni 2018

Sidst verificeret

1. juni 2018

Mere information

Begreber relateret til denne undersøgelse

Andre undersøgelses-id-numre

  • 16-273

Plan for individuelle deltagerdata (IPD)

Planlægger du at dele individuelle deltagerdata (IPD)?

INGEN

Lægemiddel- og udstyrsoplysninger, undersøgelsesdokumenter

Studerer et amerikansk FDA-reguleret lægemiddelprodukt

Ingen

Studerer et amerikansk FDA-reguleret enhedsprodukt

Ingen

Disse oplysninger blev hentet direkte fra webstedet clinicaltrials.gov uden ændringer. Hvis du har nogen anmodninger om at ændre, fjerne eller opdatere dine undersøgelsesoplysninger, bedes du kontakte register@clinicaltrials.gov. Så snart en ændring er implementeret på clinicaltrials.gov, vil denne også blive opdateret automatisk på vores hjemmeside .

Kliniske forsøg med Drink

3
Abonner