이 페이지는 자동 번역되었으며 번역의 정확성을 보장하지 않습니다. 참조하십시오 영문판 원본 텍스트의 경우.

E-CLAIR: Efficiency and Cost-effectiveness of Artificial Intelligence Based Diabetic Retinopathy Screening in Flanders (E-CLAIR)

2022년 5월 20일 업데이트: JulieJacob, Universitaire Ziekenhuizen KU Leuven
To evaluate the efficiency and cost-effectiveness of an artificial intelligence based diabetic retinopathy screening program in Flanders

연구 개요

상세 설명

The increase of diabetes patients is a 21st century global health challenge with a predicted 642 million people suffering from the disease by 2040. Diabetes mellitus is characterized by high blood sugar levels over a prolonged period of time. These uncontrolled blood sugar levels can damage the inner lining of blood vessels which on the long term causes microvascular complications that affect small blood vessels. Retinopathy is the most prevalent microvascular complication of diabetes and is caused by small blood vessel damage, and neural damage at the back layer of the eye, the retina.

Diabetic retinopathy (DR) is the leading cause of blindness and visual disability in the working population. According to a study of the Eye Diseases Prevalence Research group, 40% of adult diabetes patients in the United States have some degree of DR and 8% have vision-threatening forms of DR. In addition, the DR Barometer study indicated that many patients with diabetes do not have a regular appointment with ophthalmology for an eye examination. Risk of vision loss can be significantly decreased with annual retinal screening and detection of cases that need to be referred for follow-up and treatment. The best example showing the value of eye screening is from the United Kingdom (UK). As a result of an implementation of a nationwide screening program, DR is no longer the leading cause of irreversible blindness in the UK.

In Flanders, and in Belgium as a whole, no such well-organized, nationwide DR screening program is in place and the approach is more fragmented. Flemish guidelines for diabetes care recommend an annual visit to the ophthalmologist for all the diabetic patients who receive insulin therapy in order to check if they have DR. About 30% of the diabetics will be diagnosed for DR and 70% are disease free or in a very early stage that doesn't need further treatment. However, manual detection of DR performed by an occupied, scarce ophthalmologist is labor-intensive and expensive, causing long waiting times for the patient and possibly resulting in a lack of care when needed.

Given the extent of the diabetes population in Flanders it is self-evident that there are difficulties to screen all patients in a timely manner by ophthalmologists. Indeed, a large amount of diabetes type 2 patients do not follow the annual referral by their general practitioner (GP) and are therefore screened at a too late stage, resulting in high, avoidable costs for the patient and society. Even more, the screening of the diabetic patients by an ophthalmologist put a resource burden on our healthcare system. Task differentiation, where trained graders or GP's instead of ophthalmologists grade for referable DR, can offer a solution for the too long waiting times and the high cost. Nevertheless, manual grading of DR still is labor-intensive and costly. Even more, despite the implementation of nationwide screening programs for DR and their accompanying grading protocols, there is still substantial room for improvement in the accuracy of manual DR grading.

Recently, deep learning (DL), a form of artificial intelligence (AI), has been introduced for automated analysis of images. In a landmark paper, Gulshan and co-workers published on a deep learning algorithm with high sensitivity and specificity for detecting referable DR. This study paved the way for further developments in the field of deep learning for automated DR detection, resulting in DL models that achieve specialist-level accuracy in diagnosing DR severity. IDx, for example, obtained the first-ever FDA authorization for an AI diagnostic system in any field of medicine for DR detection.

Implementation of software for automated analysis is seen as a cost-effective solution to support decision-making in an eye screening program. In the study by Tufail et al. three different AI grading tools were retrospectively compared for their performance and cost-effectiveness in the DR screening program in the UK. In a follow-up study by Heydon et al. the most promising AI grading tool was prospectively evaluated for use in the UK screening program, demonstrating high sensitivity with a specificity that could halve the workload of the manual graders.

Despite recent research there is still an existing gap for AI to be implemented effectively and efficiently in DR screening programs. For example, the high false-positive rate of AI based results hamper the clinical workflow. Also important to note is that DL models cannot replace the breadth and contextual knowledge of human specialists. It is the case that even the most accurate models will still need to be implemented into an existing clinical workflow before they can improve patient care at all. Besides, the real-world uptake of AI applications is slow and this is partly due to a lack of convincing evidence of the economical impact.

Taken all together, renewal within diabetes care in Flanders, and more in particular further development of a more efficient DR screening pathway, is necessary to ensure that the accessibility and quality of diabetic eye care can be guaranteed at manageable costs. Flanders can undoubtedly benefit from a more efficient and cost-effective AI-assisted DR screening workflow that is at least as accurate as a human specialist. Note that the translation of study results abroad to the Flanders situation is limited. After all, one cannot simply assume that cost-effectiveness ratios from foreign economic evaluations also apply in the Flanders context. Meaning that policymakers cannot base their decisions on the possible introduction of preventive screening interventions in Flanders directly on foreign studies. These findings demonstrate the clear need to set up a specific research project in Flanders to evaluate the efficiency and cost-effectiveness of a tailor-made DR screening program in Flanders.

연구 유형

중재적

등록 (예상)

1200

단계

  • 해당 없음

연락처 및 위치

이 섹션에서는 연구를 수행하는 사람들의 연락처 정보와 이 연구가 수행되는 장소에 대한 정보를 제공합니다.

연구 연락처

연구 장소

      • Antwerp, 벨기에
        • 모병
        • ZNA
        • 연락하다:
          • Pieter Paul Schauwvlieghe
      • Antwerpen, 벨기에
        • 모병
        • UZA
        • 연락하다:
          • Luc Van Os
      • Brugge, 벨기에
        • 모병
        • AZ Sint Jan
        • 연락하다:
          • Eva Vanhonsebrouck
      • Turnhout, 벨기에
        • 모병
        • Az Turnhout
        • 연락하다:
          • Werner Dirven

참여기준

연구원은 적격성 기준이라는 특정 설명에 맞는 사람을 찾습니다. 이러한 기준의 몇 가지 예는 개인의 일반적인 건강 상태 또는 이전 치료입니다.

자격 기준

공부할 수 있는 나이

18년 이상 (성인, 고령자)

건강한 자원 봉사자를 받아들입니다

아니

연구 대상 성별

모두

설명

Inclusion Criteria:

  • Diagnosis of diabetes mellitus
  • Age > 18 years old
  • Patient is capable of giving informed consent
  • Fluent in written and oral Dutch, or interpreter present

Exclusion Criteria:

  • - History of treatment for diabetic retinopathy or diabetic macular edema (laser or intravitreal injections)
  • Participant is contraindicated for imaging by fundus imaging systems used in the study

공부 계획

이 섹션에서는 연구 설계 방법과 연구가 측정하는 내용을 포함하여 연구 계획에 대한 세부 정보를 제공합니다.

연구는 어떻게 설계됩니까?

디자인 세부사항

  • 주 목적: 특수 증상
  • 할당: 무작위
  • 중재 모델: 단일 그룹 할당
  • 마스킹: 없음(오픈 라벨)

무기와 개입

참가자 그룹 / 팔
개입 / 치료
활성 비교기: current workflow in Flanders
patient visits ophthalmologist
examination by ophthalmologist
활성 비교기: AI-only workflow
patient is imaged, images are interpreted by DR AI tool, only referrable cases identified by DR AI tool will visit ophthalmologist
a form of artificial intelligence (AI), has been introduced for automated analysis of images
활성 비교기: AI-human workflow
patient is imaged, images are interpreted by DR AI tool, referrable cases identified by DR AI tool will be remotely graded by a human, only the high risk patients will visit ophthalmologist
referrable cases identified by DR AI tool will be remotely graded by a human

연구는 무엇을 측정합니까?

주요 결과 측정

결과 측정
측정값 설명
기간
sensitivity
기간: 6 months
To evaluate the efficiency of the use of AI in screening for DRP: sensitivity
6 months
specificity
기간: 6 months
To evaluate the efficiency of the use of AI in screening for DRP: specificity
6 months
AUC
기간: 6 months
To evaluate the efficiency of the use of AI in screening for DRP: AUC
6 months

2차 결과 측정

결과 측정
측정값 설명
기간
precision
기간: 6 months
performance of three DR screening workflows: precision
6 months
decision tree model
기간: 6 months
cost-effectiveness of three DR screening workflows: decision tree model
6 months
recall
기간: 6 months
performance of three DR screening workflows : recall
6 months
F1 score
기간: 6 months
performance of three DR screening workflows: F1 score
6 months
false positives and false negatives
기간: 6 months
performance of three DR screening workflows: false positives and false negatives
6 months

공동 작업자 및 조사자

여기에서 이 연구와 관련된 사람과 조직을 찾을 수 있습니다.

수사관

  • 수석 연구원: Julie Jacob, MD PhD, Universitaire Ziekenhuizen KU Leuven

간행물 및 유용한 링크

연구에 대한 정보 입력을 담당하는 사람이 자발적으로 이러한 간행물을 제공합니다. 이것은 연구와 관련된 모든 것에 관한 것일 수 있습니다.

일반 간행물

연구 기록 날짜

이 날짜는 ClinicalTrials.gov에 대한 연구 기록 및 요약 결과 제출의 진행 상황을 추적합니다. 연구 기록 및 보고된 결과는 공개 웹사이트에 게시되기 전에 특정 품질 관리 기준을 충족하는지 확인하기 위해 국립 의학 도서관(NLM)에서 검토합니다.

연구 주요 날짜

연구 시작 (실제)

2021년 6월 17일

기본 완료 (예상)

2022년 11월 1일

연구 완료 (예상)

2022년 12월 1일

연구 등록 날짜

최초 제출

2021년 10월 1일

QC 기준을 충족하는 최초 제출

2022년 5월 20일

처음 게시됨 (실제)

2022년 5월 26일

연구 기록 업데이트

마지막 업데이트 게시됨 (실제)

2022년 5월 26일

QC 기준을 충족하는 마지막 업데이트 제출

2022년 5월 20일

마지막으로 확인됨

2022년 5월 1일

추가 정보

이 연구와 관련된 용어

개별 참가자 데이터(IPD) 계획

개별 참가자 데이터(IPD)를 공유할 계획입니까?

아니요

약물 및 장치 정보, 연구 문서

미국 FDA 규제 의약품 연구

아니

미국 FDA 규제 기기 제품 연구

아니

이 정보는 변경 없이 clinicaltrials.gov 웹사이트에서 직접 가져온 것입니다. 귀하의 연구 세부 정보를 변경, 제거 또는 업데이트하도록 요청하는 경우 register@clinicaltrials.gov. 문의하십시오. 변경 사항이 clinicaltrials.gov에 구현되는 즉시 저희 웹사이트에도 자동으로 업데이트됩니다. .

gold standard에 대한 임상 시험

3
구독하다