Effects of Kuvan on Melatonin Secretion

November 8, 2016 updated by: Shoji Yano, University of Southern California

Pilot Study to Evaluate Melatonin Secretion as a Marker of Decreased Serotonin in Individuals With PKU: Evaluation of the CNS Effects of Tetrahydrobiopterin

This study examines the effect of tetrahydrobiopterin (Kuvan) and Large Neutral Amino Acid (LNAA) therapy on melatonin and dopamine levels in individuals with Phenylketonuria (PKU). The investigators hypothesize that Kuvan therapy will improve melatonin secretion and urine dopamine levels to some extent. However significantly greater responses in melatonin and dopamine secretions may be observed with combined treatment with Kuvan and supplementation of LNAA.

Study Overview

Detailed Description

Background: Phenylketonuria (PKU) is a genetic condition due to missing one of the key enzymes of phenylalanine (Phe) degradation. The missing enzyme is phenylalanine hydroxylase (PAH). Because of the deficiency of the enzyme, plasma Phe is highly elevated compared with other plasma amino acids. This abnormal ratio i.e., Phe vs. each of the other large neutral amino acids (LNAA) which are transported into the brain as precursors of neurotransmitters through the common transporter LAT1, is likely to contribute to neurotransmitter deficiencies in individuals with PKU. Patients who do not restrict Phe intake develop mental retardation and neuropsychological disorders. Treatment of PKU has been historically limited to restriction of Phe intake, meaning protein restriction.

The FDA recently approved a new medication, Kuvan, a synthetic form of tetrahydrobiopterin (BH4) manufactured by BioMarin Pharmaceutical Inc., for patients with PKU. Kuvan is a cofactor for PAH, tyrosine hydroxylase, and tryptophan hydroxylase. Patients with PKU typically undergo a month-long trial of Kuvan to determine if they are responders to the drug, meaning blood phenylalanine drops by more than 30 percent. Those who are not responders do not usually continue Kuvan, however our recent study (HS 08-00147) showed that classical PKU patients who are not Kuvan responders demonstrated improvement in their maladaptive behaviors, suggesting some effects of Kuvan in the CNS system without reducing blood phenylalanine concentrations (Moseley et al, manuscript under preparation). Seven subjects who did not respond to Kuvan with lower blood Phe levels had significant increases in blood tyrosine after 6 months (p=0.015), along with improvement in the Vineland Internalizing and Overall Maladaptive Behavior Indexes at 12 months (p=0.032 and 0.049, respectively). Kaufman reported that Kuvan at dose of 20 mg/kg/day increased CSF BH4 levels (1). Based on these observations, it is likely that Kuvan has some effects on neurotransmitter metabolism.

Supplementation of large neutral amino acids (LNAA) as a medical food has been used in Europe for the past 25 years and it is believed to be effective in treating patients with PKU. In the article by Shindeler et al. (2), 16 individuals (7 males and 9 females; age 11y to 45 y) participated in the study which consisted 4 weeks wash-out and 4 two-weeks stages (on phenylalanine restricted diet and with/without LNAA, and on no phenylalanine restricted diet and with/without LNAA). No specific adverse effects are reported in the article. Large neutral amino acid therapy for the treatment of PKU has been done in the past (3). LNAA is used primarily for adolescents and adults who cannot adhere to the standard phe-restricted diet. LNAA treatment has been approved for PKU patients just like other special formulas. Our previous studies have demonstrated deficiency of serotonin in the brain, as evidenced by low nocturnal melatonin secretion and reduced urine dopamine compared to controls, and that supplementation with LNAA improves, but does not normalize these markers.

Rationale: Patients with PKU are thought to be deficient in tyrosine and tryptophan in the brain tissue level because of the abnormal phe/tyrosine and phe/tryptophan ratios. Previous studies showed low serotonin levels in cerebrospinal fluid in PKU individuals and some improvement was observed after tryptophan supplementation (4). Our prior study suggested deficiency of tryptophan in the brain tissue was demonstrated by low nocturnal melatonin secretion and 6-sulfatoxymelatonin, which is a stable metabolite of melatonin (5). LNAA supplementation resulted in some improvement in melatonin secretion, however, melatonin secretion in patients with PKU on LNAA was still significantly lower than the control group. Supplementation of Kuvan may activate the brain tyrosine and tryptophan hydroxylases (6), resulting in improvement of nocturnal melatonin secretion and urine melatonin and dopamine concentrations. By supplementing LNAA increased amount of neurotransmitter precursor amino acids will be transported into the brain and activated brain tyrosine and tryptophan hydroxylases by Kuvan will act on these precursors to produce neurotransmitters, i.e., serotonin and dopamine. These synergistic effects may increase melatonin and dopamine levels to closer to the control levels.

Aims of the Study: To show scientific evidence of improvement in metabolism of neurotransmitters including serotonin and dopamine in patients with PKU treated with LNAA only, Kuvan only, and Kuvan and LNAA.

Objectives: This investigator initiated study has three objectives: (1) To evaluate if tetrahydrobiopterin (Kuvan) supplementation has beneficial effects on melatonin secretion and urine dopamine levels in individuals with PKU when they are and are not treated with large neutral amino acids; (2) To demonstrate synergistic effects of LNAA supplementation and Kuvan therapy in improvement of neurotransmitter metabolism in individuals with PKU; and (3) To gather pilot information necessary to design a larger, multicenter trial of these interventions, should results of these pilot studies indicate further study is warranted.

Study Methodology: This study will be conducted in adult patients with PKU in four 4-week phases: phase I (large neutral amino acid/LNAA), phase II (Washout), phase III (Kuvan only) and phase IV (Kuvan and LNAA). Kuvan supplementation will be adjusted to provide 20 mg/kg/day. LNAA therapy is adjusted to the manufacturer's instruction (total tablets of LNAA is 1/2 X BW kg). On the last day of each phase, subjects will stay approximately 14 to 18 hours overnight at the CTU at USC University Hospital. Blood specimens will be collected every 2 hours from 7:00 pm to 7:00 am. First void urine will be collected on the day of discharge (patients will be asked to void urine at 11:00 pm and the first void urine will be collected).

Blood will be collected in a red top tube (5 ml) through an IV line which is saline locked during the study period. Avoid hemolysis by collecting blood through an IV line into a reasonably large peripheral vein. Blood will be left to clot for 45 minutes at room temperature (18-28 C) and protected from light (a dim flash light or a yellow light < 100 lux). Serum will be collected and stored at - 20 C until they are subjected to analysis for plasma melatonin and plasma amino acids. Urine 20 ml first void sample will be collected into two plain tubes (10 ml per each tube) and stored in a deep freezer (-20 C) until subjected to be analyzed for dopamine and 6-sulfatoxymelatonin.

This is an open-labeled study. During all four 4-week phases, subjects will remain on their protein-restricted diet. LNAA tablets are not considered a medicine, but are under the category of medical foods; examples include low protein foods. LNAA tablets will be provided by the LNAA manufacture (Applied Nutrition). Kuvan will be taken per orally with breakfast and LNAA tablets will be taken with meals three times per day.

Study Type

Interventional

Enrollment (Actual)

10

Phase

  • Phase 4

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • California
      • Los Angeles, California, United States, 90033
        • Keck School of Medicine, Clinical Trials Unit at Keck Medical Center of USC

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Adult English-speaking patients who have confirmed PKU, and have tolerated Kuvan therapy at 20 mg/kg/day in the past, and are currently on the LNAA supplements will be considered as candidates for the study.
  • Subjects must be able to stop LNAA therapy for 4 weeks.
  • This will be determined by the subjects themselves, based on their past personal experiences.

Exclusion Criteria:

  • Individuals who have never taken Kuvan, who have never been on LNAA therapy, who are under the age of 18, or who do not speak English will be excluded.
  • Subjects who cannot stop LNAA therapy for 4 weeks will be excluded.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: LNAA, washout, Kuvan, and LNAA+Kuvan
One group of 12 subjects, each under 4 conditions (each phase is 4 weeks)
Dosed at 20 mg/kg; PO; Phase 3, Phase 4
Other Names:
  • Tetrahydrobiopterin
Dosed by weight: weight x .5 = total tablets per day; PO; Phase 1, Phase 4; taken with food
Other Names:
  • LNAA

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Serum Melatonin at the End of 4 Weeks
Time Frame: measured every 4 weeks up to 16 weeks
Evaluated for each subject under 4 conditions (washout, LNAA only, Kuvan only and LNAA+Kuvan)
measured every 4 weeks up to 16 weeks
Urine 6-sulfatoxymelatonin at the End of 4 Weeks
Time Frame: measured every 4 weeks up to 16 weeks
Evaluated for each subject under 4 conditions (washout, LNAA only, Kuvan only and LNAA+Kuvan)
measured every 4 weeks up to 16 weeks
Urine Dopamine at the End of 4 Weeks
Time Frame: measured every 4 weeks up to 16 weeks
Evaluated for each subject under 4 conditions (washout, LNAA only, Kuvan only and LNAA+Kuvan)
measured every 4 weeks up to 16 weeks

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Collaborators

Investigators

  • Principal Investigator: Shoji Yano, M.D., Ph.D., USC Keck School of Medicine, Dept. of Pediatrics, Genetics Division

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

May 1, 2012

Primary Completion (Actual)

December 1, 2014

Study Completion (Actual)

December 1, 2014

Study Registration Dates

First Submitted

June 8, 2012

First Submitted That Met QC Criteria

June 11, 2012

First Posted (Estimate)

June 12, 2012

Study Record Updates

Last Update Posted (Estimate)

November 18, 2016

Last Update Submitted That Met QC Criteria

November 8, 2016

Last Verified

November 1, 2016

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Phenylketonuria (PKU)

Clinical Trials on Kuvan

3
Subscribe