Providing Brain Control of Extracorporeal Devices to Patients With Quadriplegia

April 6, 2021 updated by: Richard A. Andersen, PhD

A Feasibility Study of the Ability of the Neural Prosthetic System to Provide Direct Brain Control of Extracorporeal Devices in Patients With Quadriplegia Due to High Spinal Cord Injury

This research study is being done to develop a brain controlled medical device, called a brain-machine interface or BMI, that will provide people with a spinal cord injury some ability to control an external device such as a computer cursor or robotic limb by using their thoughts.

Developing a brain-machine interface (BMI) is very difficult and currently only limited technology exists in this area of neuroscience. The device in this study involves implanting very fine recording electrodes into areas of the brain that are known to create arm movement plans and provide hand grasping information. These movement and grasp plans would then normally be sent to other regions of the brain to execute the actual movements. By tying into those pathways and sending the movement plan signals to a computer instead, the investigators can translate the movement plans into actual movements by a computer cursor or robotic limb.

The device being used in this study is called the NeuroPort Array and is surgically implanted in the brain. This device and the implantation procedure are experimental which means that it has not been approved by the Food and Drug Administration (FDA). One NeuroPort Array consists of a small grid of electrodes that will be implanted in brain tissue with a small cable that runs from the electrode grid to a small hourglass-shaped pedestal. This pedestal is designed to be attached to the skull and protrude though the scalp to allow for connection with the computer equipment.

The investigators hope to learn how safe and effective the NeuroPort Array is in controlling computer generated images and real world objects, such as a robotic arm, using imagined movements of the arms and hands. To accomplish this goal, two NeuroPort Arrays will be used.

Study Overview

Status

Completed

Conditions

Intervention / Treatment

Study Type

Interventional

Enrollment (Actual)

1

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • California
      • Downey, California, United States, 90242
        • Rancho Los Amigos National Rehabilitation Center
      • Los Angeles, California, United States, 90033
        • University of Southern California
      • Pasadena, California, United States, 91125
        • California Institute of Technology

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 65 years (ADULT, OLDER_ADULT)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • High cervical spinal lesion
  • Able to provide informed consent
  • Able to understand and comply with instructions in English
  • Able to communicate via speech
  • Surgical clearance
  • Life expectancy greater than 12 months
  • Live within 60 miles of study location and willing to travel up to 5 days per week
  • A regular caregiver to monitor the surgical site
  • Psychosocial support system

Exclusion Criteria:

  • Presence of memory problems
  • intellectual impairment
  • Psychotic illness or chronic psychiatric disorder, including major depression
  • Poor visual acuity
  • Pregnancy
  • Active infection or unexplained fever
  • scalp lesions or skin breakdown
  • HIV or AIDS infection
  • Active cancer or chemotherapy
  • Diabetes
  • Autonomic dysreflexia
  • History of seizure
  • Implanted hydrocephalus shunt
  • Previous neurosurgical history affecting parietal lobe function
  • Medical conditions contraindicating surgery and chronic implantation of a medical device
  • Prior cranioplasty
  • Unable to undergo MRI or anticipated need for MRI during study
  • Nursing an infant or unwilling to bottle-feed infant
  • Chronic oral or intravenous use of steroids or immunosuppressive therapy
  • Suicidal ideation
  • Drug or alcohol dependence
  • Planning to become pregnant, or unwilling to use adequate birth control

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: BASIC_SCIENCE
  • Allocation: NA
  • Interventional Model: SINGLE_GROUP
  • Masking: NONE

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
EXPERIMENTAL: Neural Prosthetic System
The Neural Prosthetic System consists of two Neuroport Arrays, which are described in detail in the intervention description. Both Neuroport Arrays are inserted into the posterior parietal cortex, an area of the brain used in reach and grasp planning. The arrays are inserted and the percutaneous pedestal is attached to the skull during a surgical procedure. Following surgical recovery the subjects will participate in study sessions 3-5 times per week in which they will learn to control an end effector by thought. They will then use the end effector to perform various reach and grasp tasks.
The Neural Prosthetic System is primarily composed of two NeuroPort Arrays. Each array is comprised of 100 microelectrodes (1.5 mm in length) uniformly organized on a 4 mm x 4 mm silicon base that is 0.25 mm thick. Each microelectrode is insulated with Parylene-C polymer and is electrically isolated from neighboring electrodes by non-conducting glass. Each microelectrode has a platinum tip that is 100-200 microns in length and offers impedance values from 100-800 kilo-ohms. Of the 100 electrodes, 96 are wire bonded using 25 micron gold alloy insulated wires collectively sealed with a silicone elastomer. The wire bundle is potted to a printed circuit board with epoxy, the printed circuit board is inserted into the Patient Pedestal (percutaneous connector), and then the Patient Pedestal is filled with silicone elastomer. Two fine platinum reference wires are also attached to the Patient Pedestal. The Patient Pedestal is 19 mm wide at the skin interface.
Other Names:
  • NeuroPort Array

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Number of Participants With Patient Control Over the End Effector (Virtual or Physical)
Time Frame: Six years after array implantation
The primary effectiveness objective of this study is to evaluate the effectiveness of the NPS in controlling virtual or physical end effectors. The driving hypotheses are that control over the physical and virtual end effectors, as measured by accuracy, will be significantly greater than the level of chance. Three methods will be used to assess the effectiveness of the extracorporeal device: standardized tests, comparison of task performance to the level of chance, and the Quality-of-Life Inventory (QOLI). In collaboration with therapists at Rancho Los Amigos National Rehabilitation Center, two commonly-used, standard tests have been selected by which the use of robotic arm will be evaluated: the Action Research Arm Test (ARAT) and the Canadian Occupational Performance Measure (COPM).
Six years after array implantation
Number of Participants With Absence of Infection or Irritation
Time Frame: Six years after array implantation
The primary objective of this study is to evaluate the safety of the NPS. The driving hypotheses are that the implantation will not be associated with infection or irritation, and that the serious adverse event rate will not rise above 1%. The method of evaluation will be inspection of subject's scalp for evidence of reddening or discharge; review of new symptoms including possible fever, headache, visual or auditory changes, or change in mood or behavior; serial neurologic exams. The condition of the area will be compared with its condition on previous visits. History will be obtained regarding new symptoms. Neurologic exam will be compared to baseline neuro exam. The SAE rate will be calculated as the number of SAEs per implant days.
Six years after array implantation

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Helpful Links

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

February 1, 2013

Primary Completion (ACTUAL)

January 1, 2019

Study Completion (ACTUAL)

January 1, 2019

Study Registration Dates

First Submitted

April 25, 2013

First Submitted That Met QC Criteria

May 6, 2013

First Posted (ESTIMATE)

May 9, 2013

Study Record Updates

Last Update Posted (ACTUAL)

April 30, 2021

Last Update Submitted That Met QC Criteria

April 6, 2021

Last Verified

April 1, 2021

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Study Data/Documents

  1. Publication
    Information comments: "Hand Shape Representation in Parietal Reach Region". The Journal of Neuroscience.
  2. Publication
    Information comments: "Decoding motor imagery from the posterior parietal cortex of a tetraplegic human." Science

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Tetraplegia

Clinical Trials on Neural Prosthetic System

3
Subscribe