Nitrous Oxide for Identifying the Intersegmental Plane in Segmentectomy: A Randomized Controlled Trial

March 1, 2023 updated by: Shijiang Liu, MD, The First Affiliated Hospital with Nanjing Medical University
Lung cancer is currently one of the most common malignant tumors in the world. In recent years, with the popularity of high-resolution CT, more and more early-stage lung cancers have been found. Anatomic pneumonectomy is gradually popular because it can completely remove lung nodules and preserve lung function to the greatest extent. During the surgery, the precise and rapid determination of intersegmental border is one of the key technologies. Improved inflation-deflation method is currently the most widely used method in clinical practice. Previous studies demonstrated that increasing the concentration of nitrous oxide in mixtures of N2O/O2 will lead to a faster rate of collapse. The rapid diffusion properties of N2O would be expected to speed lung collapse and so facilitate surgery. This study was designed to explore three types of inspired gas mixture used during two-lung anesthesia had an effect on the intersegmental border appearance time during pneumonectomy and its feasibility and safety: 75% N2O (O2: N2O = 1: 3), 50% N2O (O2: N2O = 1: 1), 100% oxygen.

Study Overview

Detailed Description

This randomized parallel group trial enrolled lung cancer patients scheduled to receive thoracoscopic anatomic segmentectomy at The First Affiliated Hospital of Nanjing Medical University. When anesthesia induction was completed, intubation was carried out using an appropriate-size double-lumen endobronchial tube (DLT) and the position of the DLT was confirmed with fiberoptic bronchoscopy and adjusted as needed. OLV of the dependent lung with FiO2=1.0 was begun in the lateral position, by clamping the DLT to the nonventilated lung proximally and opening the distal port of the DLT lumen to the atmosphere. Tidal volumes were 5 mL/kg ideal bodyweight (male: height -100, and female: height - 105) without positive end expiratory pressure (PEEP). In order to avoid possible confounding effects of inhalation of volatile anesthetics on oxygenation, all subjects received total intravenous anesthesia.

According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identi-fied and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group75 set to N2O:O2=6:2, Group50 set to N2O:O2=4:4, Group0 set to O2=8), avoiding the interference of the total gas flow. When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.

Study Type

Interventional

Enrollment (Actual)

81

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Jiangsu
      • Nanjing, Jiangsu, China, 210029
        • The First Affiliated Hospital of Nanjing Medical University
      • Nanjing, Jiangsu, China, 210029
        • The First Affiliated Hospital with Nanjing Medical University

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

20 years to 70 years (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

1、20 to 70 years of age; 2、early stage lung cancer(diameter of tumor consolidation ≤ 2cm, none evidence of lymph node or distant metas-tasis, c-stage ⅠA1 or ⅠA2)(active limited resection); 3、 patients at high risk due to poor general condition who cannot undergo lobectomy (c-stage IA1 to IA3) (passive limited resection)

Exclusion Criteria:

  1. a history of severe asthma or pneumothorax;
  2. pulmonary bullae on chest CT;
  3. patient refusal

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Supportive Care
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Triple

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Group75
According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identified and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group75 set to N2O:O2=6:2). When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.
During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.
Other Names:
  • oxygen
Experimental: Group50
According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identified and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group50 set to N2O:O2=4:4). When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.
During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.
Other Names:
  • oxygen
Active Comparator: Group0
According to preoperative 3D-CTBA evaluation of bronchial and vascular structure of pulmonary nodules and pulmonary segments, the target segmental bronchus, arteries and intra-segment veins were accurately identified and dissected by ligation or stapler cutting. After that, the anesthesiologist began to make preparations for the lung inflation. The portable nitrous oxide concentration detector (TD600-SH-B-N2O) was installed to detect N2O concentration (vol%), and then adjusted the anesthesia machine to the manual control mode. The flow of the selected gas mixture was set to 8L/min (Group0 set to O2=8). When the N2O concentration detector reached the predetermined gas concentration, and then the collapsed lung was re-expanded completely with controlled airway pressure under 20 cmH2O (1cm H2O=0.098 kPa) by the anesthesiologist. This procedure took approximately 1 min, and then FiO2=1.0 was performed after the initiation of the OLV.
During one-lung ventilation with an open chest, the nonventilated lung collapses initially due to elastic recoil, which quickly brings the lung down to its closing capacity. Remaining gas in the lung is then removed by absorption into the pulmonary capillary blood. The rapid diffusion properties of N2O(Blood gas distribution coefficient is 0.47)would be expected to speed lung collapse and so facilitate surgery. The previous study suggested that increasing the concentration of N2O in mixtures of N2O/O2 will lead to a faster rate of collapse. When using nitrous oxide in oxygen during lung ventilation, ongoing oxygen uptake by blood shunting will serve to increase the partial pressure of nitrous oxide in parts of the lung that are still expanded. This will soon result in a partial pressure gradient for nitrous oxide uptake also, with a consequent faster rate of lung collapse than would occur in a patient being ventilated with 100% oxygen.
Other Names:
  • oxygen

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
The Intersegmental Border Appearance Time During the Surgery
Time Frame: The time of appearance of the intersegmental plane that can be performed satisfactorily by surgeons
The starting point of intraoperative expansion and collapse observation is the time when the lung tissue is completely expanded after blocking the relevant structure of the target segment; the end point is when a clear demarcation is formed between the target segment and the immediately-reserved lung segment, and this boundary does not follow significant changes over time), and the time was recorded in seconds (S).
The time of appearance of the intersegmental plane that can be performed satisfactorily by surgeons

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
The arterial blood gas results during perioperative period
Time Frame: Immediately after the radial arterial catheterization when inhaling the air, pre-intervention, 5minutes, 15minnutes during the single lung ventilation after the intervention
Extracting arterial blood gas
Immediately after the radial arterial catheterization when inhaling the air, pre-intervention, 5minutes, 15minnutes during the single lung ventilation after the intervention

Other Outcome Measures

Outcome Measure
Measure Description
Time Frame
The Incidence of Postoperative Complications and the Length of Hospital Stay
Time Frame: 2 weeks after surgery.
Recording duration of surgery, the incidence of postoperative complications (including air leak, chylothorax, atelectasis, pulmonary embolism, pulmonary infection), total thoracic drainage, duration of drainage and postoperative hospital stay.
2 weeks after surgery.

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Chair: cunming liu, Master, The First Affiliated Hospital with Nanjing Medical University
  • Principal Investigator: zicheng liu, Doctorate, The First Affiliated Hospital with Nanjing Medical University
  • Principal Investigator: Wei Wen, Master, The First Affiliated Hospital with Nanjing Medical University
  • Principal Investigator: Jun Wang, Master, The First Affiliated Hospital with Nanjing Medical University

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

January 15, 2020

Primary Completion (Actual)

July 15, 2020

Study Completion (Actual)

July 15, 2020

Study Registration Dates

First Submitted

March 2, 2020

First Submitted That Met QC Criteria

March 7, 2020

First Posted (Actual)

March 10, 2020

Study Record Updates

Last Update Posted (Actual)

March 2, 2023

Last Update Submitted That Met QC Criteria

March 1, 2023

Last Verified

March 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Lung Cancer

Clinical Trials on nitrous oxide

3
Subscribe