Normal Pressure Hydrocephalus and Sleep Apnea (NPH/OSA)

November 2, 2022 updated by: University of Valencia

Normal-pressure Hydrocephalus. Relationship Between Sleep Apnea and Intracranial and Intraabdominal Pressures. Outcome Prognostic Factors in CSF Shunting. Features Guiding to Implant a Ventricle-peritoneal Versus a Ventriculo-atrial Shunt

Normal-pressure hydrocephalus is associated with increases in the intracranial pressure during the night sleep. Sleep apnea also increases the intracranial pressure during the apneic spells. When patients are operated the distal part of the shunt is inserted inside the abdominal cavity, which pressure also increases during the sleep apnea episodes. this is particularly important considering that the recumbent position used to sleep further increases the intraabdominal pressure and that impairs the CSF drainage through the shunt system. The purpose of this study is to analyze the intracranial and intraabdominal pressures during the sleep, particularly during the sleep apnea episodes to see which shunt should be used, to which cavity should be drained (peritoneum or heart) and if correcting the sleep apnea has some positive result on the hydrocephalus symptoms.

Study Overview

Detailed Description

Chronic hydrocephalus in adults, also known as normal pressure hydrocephalus or normal pressure hydrocephalus, occurs with the classic Hakim-Adams triad, gait ataxia, or "magnetic gait", urinary incontinence and dementia.

Most of the cases have an idiopathic origin and are the only potentially reversible cause of dementia with surgical treatment (by shunting the cerebrospinal fluid or CSF from the lateral ventricles or the thecal sac to the peritoneal cavity or the right atrium), so it is especially important to diagnose it and treat it properly.

Unfortunately, and despite all the diagnostic arsenal, the results of treatment using cerebrospinal fluid shunts (lumbo-peritoneal or ventricle-peritoneal), even in the best series, show 20-25% of poor results. These poor results have been attributed to many factors, including associated cerebral vascular pathology problems, co-existing dementia symptoms not always well diagnosed, Parkinson's disease, and, lastly, alterations in ventilatory rhythm. during the night, specifically obstructive sleep apnea or OSA.

In reality, the name of normotensive hydrocephalus or hydrocephalus at normal pressure is inaccurate because the intracranial pressure does rise and very markedly during sleep, particularly during the REM phase of sleep. What is no longer so well known is because of such significant increases in intracranial pressure occur. One possible explanation would be that obstructive sleep apnea causes increased intracranial pressure. But it remains to be clarified whether all patients with adult chronic hydrocephalus have sleep apnea, the mechanism of action, and to what extent the treatment of hydrocephalus acts on sleep apnea and vice versa.

Another aspect to consider is that the cerebrospinal fluid shunts work by the pressure gradient between the intracranial cavity and the cavity into which the cephalo-spinal fluid is drained66, usually the peritoneal fluid. During sleep apnea, there should be an increase in intra-abdominal pressure, which would result in the ventricle-peritoneal and lumbo-peritoneal shunts working suboptimally precisely at the time of day when they are most needed, that is when intracranial pressure increases. But this correlation has never been investigated or at least there are no publications about it.

Therefore, it is necessary to know the relationship between intracranial pressure, sleep apnea, and intra-abdominal pressure at night. With these data, it will be possible to better understand the dynamics of the circulation of the cerebrospinal fluid during the night (when it is more pathological in chronic hydrocephalus in adults), what type of bypass valve is the most indicated (whether or not it must have an anti-system siphon if it must be a gravitational or flow valve) and in which patients the implantation of a ventricle-atrial shunt may be an option to consider.

Study Type

Interventional

Enrollment (Anticipated)

30

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

      • Valencia, Spain, 46015
        • Recruiting
        • Vicente Vanaclocha
        • Contact:
        • Contact:

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

16 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Clinical condition compatible with normal-pressure hydrocephalus

Exclusion Criteria:

  • Cerebral vascular disease
  • Dementia not due to normal-pressure hydrocephalus
  • Parkinson's disease

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Treatment
  • Allocation: Non-Randomized
  • Interventional Model: Single Group Assignment
  • Masking: Single

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Experimental: Normal-pressure hydrocephalus only
Patients suffering from normal-pressure hydrocephalus with NO sleep apnea
Clinical response to a CSF shunt insertion
Active Comparator: Normal-pressure hydrocephalus with sleep apnea
Patients suffering from normal-pressure hydrocephalus with sleep apnea
Clinical response to a CSF shunt insertion

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Change of hydrocephalus symptoms with Mini-Mental State Examination
Time Frame: 1-2 months
Patients will be evaluated with the Mini_mental State Examination before and after CSF shunting to see the degree of improvement they get from this surgical treatment
1-2 months
Change of hydrocephalus symptoms with NPH scale after CSF shunt diversion
Time Frame: 1-2 months
Patients will be evaluated with the NPH before and after CSF shunting to see the degree of improvement they get from this surgical treatment
1-2 months

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

July 2, 2020

Primary Completion (Anticipated)

July 2, 2023

Study Completion (Anticipated)

December 31, 2023

Study Registration Dates

First Submitted

July 3, 2020

First Submitted That Met QC Criteria

July 14, 2020

First Posted (Actual)

July 15, 2020

Study Record Updates

Last Update Posted (Actual)

November 3, 2022

Last Update Submitted That Met QC Criteria

November 2, 2022

Last Verified

July 1, 2022

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

No

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Sleep Apnea

Clinical Trials on CSF shunt diversion

3
Subscribe