Mechanisms of Blood Pressure Dysfunction in Transmen Receiving Testosterone

October 31, 2022 updated by: Yale University
The purpose of this research is to explore the effects of chronic androgen exposure on sympathetic nervous system activity (SNSA) and baroreflex control of blood pressure responses in transgender men (trans men) taking gender affirming hormone therapy (HT). Blood pressure, baroreflex gain, and frequency of sympathetic responses to changes in blood pressure will be assessed in trans men and a control group of cisgender women. To fully understand HT effects on blood pressure regulation in trans men, it is crucial to understand how both SNSA, and the pattern of SNSA, can be influenced by high levels of androgen exposure in the female cardiovascular system, as well as how the two regulatory components may interact.

Study Overview

Status

Withdrawn

Intervention / Treatment

Detailed Description

The purpose of this research is to study how testosterone affects blood pressure control in trans men. High testosterone levels are detrimental to the female cardiovascular system in that higher levels are associated with increased blood pressure. Humans control blood pressure in the autonomic nervous system via the baroreflex mechanism. The arterial baroreflex is a key autonomic homeostatic mechanism involved in maintaining arterial blood pressure, and gain of the baroreflex is used as a measure of the sensitivity of sympathetic responses that act to restore acute blood pressure fluctuations. This autonomic regulation of blood pressure is also characterized by rhythmic activity (changes in cardiac frequency), which can be observed by recording sympathetic nerve traffic. When the female cardiovascular system is exposed to elevated androgens, baroreflex gain is impaired, and blood control is less efficient during an orthostatic challenge. However, to best understand the effect of a given stimulus on autonomic function, changes in frequency of the SNSA response must also be quantified in addition to the gain. Sympathetic control of arterial blood pressure is most effective in a narrow frequency range, and if this frequency range for responsiveness should narrow further, control of arterial blood pressure becomes less efficient and presents as dysfunction. The central hypothesis for this research is that dysregulation of blood pressure in trans men taking testosterone for gender affirming HT is a function of both reduced baroreflex gain and narrowed frequency-dependent relationship between arterial pressure and peripheral sympathetic vascular responsiveness. Specifically, these studies test the hypothesis that androgen supplementation with HT is associated with 1) lower baroreflex gain during a lower body negative pressure (LBNP) challenge, and 2) a narrowed response frequency range that precedes impaired sympathetic vascular response dynamics in trans men compared to control cisgender women.

Study procedures include an oral glucose tolerance test (OGTT), microneurography of the median nerve in the forearm to assess SNSA, and 2 LBNP challenges designed to examine baroreflex gain during static LBNP and then the frequency of SNSA during oscillating LBNP (OLBNP). Participants complete 3 visits for this study. Visit 1 is for informed consent procedures; Visit 2 is a pre-screening visit to complete the OGTT; Visit 3 is for experimental testing to assess gain and the frequency range. Blood pressure, heart rate and muscle SNSA (MSNA) are measured during LBNP and OLBNP. MSNA is recorded using 2 microelectrodes inserted through the skin of the forearm to record activity (firing) of the median nerve. Blood samples are taken via IV placement to measure insulin and glucose during the OGTT for Visit 2, and then sex hormones and catecholamines during Visit 3. Results from the group of young trans men will be compared to a control group of cisgender women matched for age and body mass index.

Study Type

Interventional

Phase

  • Not Applicable

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

16 years to 43 years (Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

Female

Description

Inclusion Criteria:

  • Both groups (trans men and cisgender women) must be healthy and non-smoking. Control participants must be cisgender women with regular menses every 26-34 days. Trans men participants must be currently receiving testosterone for gender affirming hormone therapy where physiologic doses of exogenous Dihydrotestosterone have been administered (via injection or transdermal application) for at least 3 months as prescribed by their local endocrine provider as part of their clinically indicated hormone therapy. Doses can vary depending on the size and goals of each patient, but blood testosterone will be between 400-1000 ng/dl.

Exclusion Criteria:

  • Subjects who smoke, have diabetes, or BP>140/90 will be excluded.
  • Subjects will not be taking medications during the study, including any insulin-sensitizing or cardiovascular medications.
  • Subjects are excluded if they have lost > 5 kg of weight within the past 6 months or perform high-intensity exercise > 3 times/week.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Basic Science
  • Allocation: Non-Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: Trans men
transgender men taking physiologic doses of testosterone for gender affirming hormone therapy
We are studying the effects of testosterone taken by trans men on mechanisms of blood pressure control and comparing those results to cisgender women that have normal (ie lower) testosterone levels.
No Intervention: control
cisgender women not receiving testosterone and with normal sex hormone levels

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Muscle Sympathetic Nerve Activity (MSNA)
Time Frame: 3 hours
MSNA is recorded continuously at rest and during O/LBNP protocols with a tungsten microelectrode (0.2 diameters insulated shaft tapered to an uninsulated tip of ~1-5 μm) inserted percutaneously into the median nerve. Multiunit, postganglionic MSNA is distinguished from other sources of nerve activity by the presence of spontaneous pulse synchronous bursts, increased activity when the subject holds their breath or clenches their first (stretches forearm muscles around median nerve), or if activity does not change when the skin is stimulated by light brushing or stroking (indicates lack of skin nerve activity). Bursts of MSNA at rest and during LBNP are quantified as total activity (AU/min), burst frequency (bursts/min) and burst incidence (bursts/100 heartbeats). The MSNA burst incidence is expressed in bursts/100 heartbeats to normalize for differences in heart rate among subjects.
3 hours
Systolic Blood Pressure (SBP)
Time Frame: 3 hours
SBP is measured continuously with a Finometer beat-to-beat blood pressure measurement system at rest and during O/LBNP protocols. Units are mm Hg.
3 hours
Diastolic Blood Pressure (DBP)
Time Frame: 3 hours
DBP is measured continuously with a Finometer beat-to-beat blood pressure measurement system at rest and during O/LBNP protocols. Units are mm Hg.
3 hours
Mean Arterial Pressure (MAP)
Time Frame: 3 hours
MAP at rest and during O/LBNP protocols is calculated as 1/3(SBP-DBP)+DBP using the beat-to-beat SBP and DBP measurements taken with the Finometer system. Units are mm Hg.
3 hours
Sympathetic Baroreflex (BR) Gain
Time Frame: 3 hours
Sympathetic BR gain is used as an index of sympathetic (neural) control of blood pressure, where gain is determined by the slope of the linear relationship between MSNA (burst/100 heartbeats) and DBP (mm Hg) at rest and during LBNP. The relationship produces a negative slope in that for a given subject, when DBP falls below the normal level sustained at rest, sympathetic activity increases to restore DBP back to that normal level. Thus, more MSNA bursts are observed at lower levels of DBP and vice versa. A steeper (more negative) slope suggests greater sensitivity of the baroreceptors to changes in blood pressure, and thereby more effective sympathetic control of blood pressure. A flatter slope suggests impaired BR sensitivity and blood pressure dysfunction, which is expected for the trans men group compared to cisgender women controls.
3 hours
Frequency in the Neural Cardiovascular Control
Time Frame: 0.5 hours
The frequency of SBP, DBP and heart rate during OLBNP is analyzed in Matlab in a linear time-invariant system (LTI) framework. Heart rate and BP measures taken during OLBNP are low-pass filtered (0.05 Hz estimated example) and corrected for end-effects using a Hamming window. The derived impulse responses (IRs) are 1/3rd octave smoothed before calculating the frequency power spectra (0.001-0.05 Hz estimated example). The power of DBP and SBP at the OLBNP frequency are anticipated to be independently inversely related to the efficiency of BP control. Further, the difference in heart rate and SBP, and in heart rate and DBP, power at those frequencies reflects the degree of autonomic function, analogous to baroreflex gain.
0.5 hours
Electrocardiogram (ECG)
Time Frame: 3 hours
A 3-lead ECG is continuously recorded at rest and during the O/LBNP protocols. The R-wave of the QRS complex of the ECG recording will be used for measures of pulse interval by determining the amount of time in seconds between the R-waves of 2 consecutive QRS complexes.
3 hours

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Brachial Artery Mean Blood Flow Velocity
Time Frame: 3 hours
Mean blood flow velocity in the brachial artery will be examined at rest and during LBNP using Doppler ultrasound velocimetry. Blood flow velocity spectra and arterial diameter are measured simultaneously with a Doppler probe and SonoScape S2 ultrasound system. The brachial artery is imaged with a 6.0-MHz linear array probe positioned at a 45° angle over the skin at the distal one-third of the upper arm. Brachial blood flow is expected to decrease as the level of LBNP increases and induces a greater orthostatic challenge. For example, blood flow would be highest at the -10LBNP stage and continually decrease during the following stages of -20, -30 and finally -40LBNP, where blood flow would be the lowest.
3 hours
Cardiovagal Baroreflex (BR) Gain
Time Frame: 3 hours
Cardiovagal BR gain is determined by the slope of the linear relationship between R-R Interval (seconds) and SBP (mm Hg) at rest and during LBNP. R-R Intervals are obtained from the ECG recording and SBP is obtained from the beat-to-beat measures taken by the Finometer.
3 hours

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Anticipated)

January 1, 2023

Primary Completion (Anticipated)

July 1, 2023

Study Completion (Anticipated)

June 30, 2024

Study Registration Dates

First Submitted

August 17, 2020

First Submitted That Met QC Criteria

August 19, 2020

First Posted (Actual)

August 24, 2020

Study Record Updates

Last Update Posted (Actual)

November 3, 2022

Last Update Submitted That Met QC Criteria

October 31, 2022

Last Verified

October 1, 2022

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

Undecided

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Hyperandrogenism

Clinical Trials on Trans men

3
Subscribe