Intraoperative EXamination Using MAChine-learning-based HYperspectral for diagNosis & Autonomous Anatomy Assessment (iEXMachyna3)

January 5, 2024 updated by: IHU Strasbourg

The intraoperative recognition of target structures, which need to be preserved or selectively removed, is of paramount importance during surgical procedures. This task relies mainly on the anatomical knowledge and experience of the operator. Misperception of the anatomy can have devastating consequences. Hyperspectral imaging (HSI) represents a promising technology that is able to perform a real-time optical scanning over a large area, providing both spatial and spectral information. HSI is an already established method of objectively classifying image information in a number of scientific fields (e.g. remote sensing).

Our group recently employed HSI as intraoperative tool in the porcine model to quantify perfusion of the organs of the gastrointestinal tract against robust biological markers. Results showed that this technology is able to quantify bowel blood supply with a high degree of precision. Hyperspectral signatures have been successfully used, coupled to machine learning algorithms, to discriminate fine anatomical structures such as nerves or ureters intraoperatively (unpublished data).

The i-EX-MACHYNA3 study aims at translating the HSI technology in combination with several deep learning algorithms to differentiate among different classes of human tissues (including key anatomical structures such as BD, nerves and ureters).

Study Overview

Detailed Description

The intraoperative recognition of target structures, which need to be preserved or selectively removed, is of paramount importance during surgical procedures. This task relies mainly on the anatomical knowledge and experience of the operator. In the setting of minimally invasive surgery, there is a reduced tactile feedback and the surgeon's vision is the only clue to discriminate the tissues. Misperception of the anatomy, due to patient-specific pathologic conditions and/or to the surgeon's inexperience, can lead to an increased risk of iatrogenic injury of critical anatomical structures and can have devastating consequences. Hyperspectral imaging (HSI) represents a promising technology that combines a photo camera to a spectrometer and that is able to perform a real-time optical scanning over a large area, in a contrast-free manner, providing both spatial and spectral information, generated by the tissue/light interaction. The technology is based on the use of reflectance spectroscopic imaging measurements. The measurement consists in the irradiation of white light on the area (normal halogen lamps, in non-harmful intensity) and the recording of the remitted spectral intensities from the area in the form of remission spectra. The optical interaction (scattering, absorption) of the incident light with the various components (including the depth) of the target material (e.g. biological tissues) alters the spectral distribution of light so that the remitted light carries information about the current material or tissue composition and physiology (e.g. perfusion). HSI is an already established method of objectively classifying image information in a number of scientific fields (e.g. remote sensing), which was first applied in the area of human medicine about 15 years ago. Because of the intrinsic advantages of non-destructive sample collection, interfacing possibilities with common optical modalities (microscope, endoscope) and quantitative, examiner independent results, various approaches have been developed in the meantime to harness the potential of hyperspectral imaging in medicine.

Its usefulness in the biomedical field has been already extensively prove. It has been previously applied in digestive surgery to quantify intestinal oxygenated hemoglobin during several procedures, or in case of mesenteric ischemia. A number of previous works focused successfully on the ability of HSI to discriminate between normal and tumor tissue, in prostate cancer, colorectal cancer, gastric cancer, glioblastoma, head and neck cancers. In the oncological field, the advances in hyperspectral features classification have been remarkable and lead to the successful use of sophisticated deep learning algorithms. In surgery, the usefulness of HSI camera has been studied to visualize the operative field under difficult bleeding or to detect tumor presence within the resection margins after surgical excision.

A japanese group used an HSI system as additional visualization tool to detect intestinal ischemia and also to classify the intraabdominal anatomy. They identified a particular wavelength (756-830 nm) for the differentiation between healthy and less perfused bowel. They also demonstrated that the spleen, colon, small intestine, urinary bladder and peritoneum have different spectral features. This finding might enable in the future HSI-based navigation of the operation field. Our group recently employed HSI as intraoperative tool in the porcine model to quantify perfusion of the organs of the gastrointestinal tract against robust biological markers. Results showed that this technology is able to quantify bowel blood supply with a high degree of precision.

Other groups previously attempted to discriminate bile duct from the vessels, esophagus from tracheal tissue, thyroid from parathyroid gland, nerve and ureter from the surrounding tissue. However, those previous works directed on recognizing key anatomical structures were conducted using either simple feature discrimination algorithms or band selection methods. The amount of information obtained after each acquisition, varies according to the camera resolution, but is quite large, therefore machine and deep learning techniques for data classification and feature extraction are required. In a set of controlled experiments in the porcine model, hyperspectral signatures have been successfully used, coupled to machine learning algorithms, to discriminate fine anatomical structures such as nerves or ureters intraoperatively (unpublished data).

The i-EX-MACHYNA3 study aims at translating the HSI technology in combination with several deep learning algorithms to differentiate among different classes of human tissues (including key anatomical structures such as BD, nerves and ureters).

Study Type

Observational

Enrollment (Actual)

112

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

      • Strasbourg, France
        • Service de Chirurgie Digestive et Endocrinienne, NHC

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Sampling Method

Non-Probability Sample

Study Population

Patients undergoing open surgical elective or emergency procedures. Patients undergoing laparoscopic procedure will also be informed about the study and in case of conversion to open surgery, will be enrolled in the study.

Description

Inclusion Criteria:

  • Man or woman over 18 years old.
  • Scheduled for elective or emergency surgery
  • Patient able to receive and understand information related to the study.
  • Patient affiliated to the French social security system.

Exclusion Criteria:

  • Contra-indication for anesthesia
  • Pregnant or lactating patient.
  • Patient under guardianship or trusteeship.
  • Patient under the protection of justice.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Cohorts and Interventions

Group / Cohort
Intervention / Treatment
Parathyroid disease
Hyperspectral images of the operative field will be collected at several time points during the surgical procedure. The device used is the TIVITA® compact Hyperspectral imaging system (Diaspective Vision GmbH, Germany). It is a CE (European Economic Area) mark approved device. The acquisition takes roughly 10 seconds, is contrast-free and contact-free.
Thyroid disease
Hyperspectral images of the operative field will be collected at several time points during the surgical procedure. The device used is the TIVITA® compact Hyperspectral imaging system (Diaspective Vision GmbH, Germany). It is a CE (European Economic Area) mark approved device. The acquisition takes roughly 10 seconds, is contrast-free and contact-free.
Liver tumors and metastases
Hyperspectral images of the operative field will be collected at several time points during the surgical procedure. The device used is the TIVITA® compact Hyperspectral imaging system (Diaspective Vision GmbH, Germany). It is a CE (European Economic Area) mark approved device. The acquisition takes roughly 10 seconds, is contrast-free and contact-free.
Digestive tumors
Hyperspectral images of the operative field will be collected at several time points during the surgical procedure. The device used is the TIVITA® compact Hyperspectral imaging system (Diaspective Vision GmbH, Germany). It is a CE (European Economic Area) mark approved device. The acquisition takes roughly 10 seconds, is contrast-free and contact-free.
Digestive perfusion
Hyperspectral images of the operative field will be collected at several time points during the surgical procedure. The device used is the TIVITA® compact Hyperspectral imaging system (Diaspective Vision GmbH, Germany). It is a CE (European Economic Area) mark approved device. The acquisition takes roughly 10 seconds, is contrast-free and contact-free.

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
To collect human tissue spectral features to build a spectral tissue library and build successively machine learning algorithm to enable real-time automated tissue recognition
Time Frame: 1 day
To collect clean and consistent datasets and the evaluation of the accuracy based on ground truth evaluations, such as clinical evaluation and pathology reports.
1 day

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
To correlate HSI values with biological data obtained as standard of care
Time Frame: 1 day
The ability to predict biological data from the spectral tissue information
1 day
To correlate HSI values with pathological data obtained as standard of care
Time Frame: 1 day
The ability to predict pathological data from the spectral tissue information
1 day

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Sponsor

Investigators

  • Principal Investigator: Michele DIANA, MD, PhD, Service de Chirurgie Digestive et Endocrinienne, NHC, Strasbourg

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

September 22, 2020

Primary Completion (Actual)

October 15, 2021

Study Completion (Actual)

October 15, 2021

Study Registration Dates

First Submitted

October 9, 2020

First Submitted That Met QC Criteria

October 9, 2020

First Posted (Actual)

October 19, 2020

Study Record Updates

Last Update Posted (Actual)

January 9, 2024

Last Update Submitted That Met QC Criteria

January 5, 2024

Last Verified

January 1, 2024

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Parathyroid Diseases

Clinical Trials on Hyperspectral Imaging

3
Subscribe