Echoguided Percutaneous Neuromodulation in the Management of Chronic Ankle Instability in Physically Active Subjects.

July 4, 2023 updated by: Escoles Universitaries Gimbernat

Effects of Echoguided Percutaneous Neuromodulation (EPNM) of the Common Peroneal Nerve and Neuromuscular Exercise in the Management of Chronic Ankle Instability (CAI): a Randomized Clinical Trial (RCT).

The lateral ankle complex sprain is the most prevalent musculoskeletal injury among the general population and athletes and is associated with long-term pain, disability, and high healthcare costs. One of the complications of a lateral ankle sprain is the development of chronic ankle instability (CAI). Conservative treatment is the initial therapeutic option for patients with CAI, however, the best strategies are not yet clear. Clinically, a new invasive technique has appeared, known as echoguided Percutaneous Neuromodulation (EPNM). To date there are no studies showing the efficacy of the technique in patients with CAI together with the combination of a neuromuscular exercise program.

Participants: Volunteers and adults, from the group of students of the Gimbernat University School with a history of ankle sprain and physically active who meet the inclusion criteria.

Study variables: Self-administered ankle function scales (Cumberland ankle instability tool: CAIT and foot and ankle ability:FAAM measure Scale), objective measurement of function in the lower limb (Test countermovement jump: CMJ and Side hop Test:SHT), measurement of isometric strength of the ankle musculature, measurement of dynamic balance (Test star excursion balance), range of motion measurement (Ankle Dorsiflexion) and pain measurement (Numeric pain rating scale: NPRS Scale).

Procedures: After carrying out the assessment, the participants will be randomized to participate in a neuromuscular exercise intervention (control group) or in a neuromuscular exercise intervention together with an application of EPNM in the common peroneal nerve (control group). experimental). The duration of the intervention in both cases will be 4 weeks, where in the control group there will be 2 sessions per week of exercise and in the experimental group 2 sessions per week of exercise plus an application of EPNM.

Objective and hypothesis: The main objective of the study will be to compare the short- and medium-term effects of both interventions in relation to the study variables to be measured. The investigators hypothesize that those patients who receive neuromodulation combined with the neuromuscular exercise program will have greater improvements.

Study Overview

Detailed Description

The lateral ankle complex sprain is the most prevalent musculoskeletal injury among the general population and athletes and is associated with long-term pain, disability, and high health costs. A review of ankle injuries on 70 analyzed sports established that lateral ankle sprains accounted for 77% of all injuries, where the highest incidence rates were found in sports characterized by running, changes of direction or running. jump like basketball, soccer or volleyball.One of the complications of lateral ankle sprain is the development of chronic ankle instability (CAI) characterized by repeated episodes or perceptions of ankle instability, persistent symptoms such as pain, swelling, and decreased function with limitations in activities of daily living and sports participation that persist more than a year after the initial injury. Conservative treatment is the initial therapeutic option for patients with CAI, however, the best strategies are not yet clear. Numerous rehabilitation protocols to improve CAI-associated deficits have been examined. These range from simple progressive strength work or postural dynamic balance protocols to multi-component (strength, balance, mobility) rehabilitation approaches with effective results in improving strength. , balance and in function.Clinically, a new invasive technique has appeared, known as echoguided Percutaneous Neuromodulation (EPNM). This minimally invasive intervention consists of the application of percutaneous electrical stimulation (biphasic square wave electrical current) through an acupuncture needle, as an electrode located in the vicinity of the nerve or motor point of the muscle to be treated under the guidance ultrasound where the generation of structural and excitation changes in the nerve is hypothesized, which as a consequence produces a decrease in its sensitization. It is an accessible, safe and economical technique to treat musculoskeletal conditions by physiotherapists. To date, there is limited evidence regarding its use. EPNM has been applied to different pathologies with good therapeutic results, but its use together with the combination of a multicomponent neuromuscular exercise program has never been studied.The main objective of the study will be to compare the effects in the short and medium term of an intervention with EPNM in the common peroneal nerve together with an exercise program in relation to the variables pain, range of motion in the ankle, strength of the ankle musculature , dynamic balance and functionality both in performance and in self-reports in patients with CAI.

Participants:

Voluntary subjects and adults, from the group of students of the Gimbernat University School with a history of ankle sprain and physically active, defined as participation in moderate aerobic physical activity of at least 30 minutes 5 days a week, or vigorous aerobic intensity of at least 20 minutes 3 days a week, will be evaluated to see if they can participate and be included in the study.

Variables under study:

Principal:

Self-administered scales: FAAM and CAIT. NPRS scale.

Secondaries:

Side hop test. Countermovement jump test. Star excursion balance test. Range of motion. Ankle Strength.

Randomization:

After the initial evaluation, the patients will be randomly assigned to receive a neuromuscular exercise program (control group) or to receive a neuromuscular exercise program plus a EPNM of the common peroneal nerve (experimental group). The hidden estimate is performed using a computer generated random table of numbers created prior to data collection by an outside researcher. Individualized and sequentially numbered index cards will be prepared. These will be placed in sealed opaque envelopes and the second external investigator will open the envelope and proceed with the treatment according to the screen.

Each group will be treated by a clinical physiotherapist, who will be the main investigator of the study, with more than 15 years of experience in the management of lower limb musculoskeletal injuries and more than 10 years of experience in the management of invasive techniques and ultrasound evaluation.

The researcher in charge of processing the data will be blinded with respect to belonging to the groups and likewise the researchers who will carry out the assessments will be blinded with respect to the group display of the participant. Participants in this study will not be blinded to their assigned group. All participants will read and sign an informed consent prior to inclusion in the study and will be asked to lead a lifestyle identical to the one they led before the start of the study.

Procedures:

Neuromuscular exercise program:

The combination of resistance exercise and balance or dynamic balance exercise has been shown to be more effective than strength-only work in the management of CAI. The exercise program applied in the intervention is based on the best available evidence and is a common practice in the clinic. All exercises will be executed under the supervision of the therapist. A 3-week intervention will be carried out with two sessions per week.

The strength program includes a protocol for the use of Theraband ® according to that described by Kaminsky et al. Participants will sit on the floor with one end of the Theraband strap attached to a trellis and the other end strapped around the ball of the ball of the foot to be worked on. The knee will be in full extension and the Theraband will be initially stretched to 170% of its resting length, regardless of resistance. Strength exercises will include all ankle movements (plantarflexion, dorsiflexion, inversion, and eversion). Program progression will include increased sets (1-3 sets of 8-10 repetitions) or increased resistance each week of the intervention depending on the subject's symptomatology.

The balance exercise program will consist of performing a series of closed kinetic chain exercises in a standing weight-bearing position that will progress from bilateral to unilateral depending on the acceptance of the load. The exercises applied in the study will be the bilateral half squat and the unilateral squat with eyes open or closed on a stable surface during the first week. There will be 3 series of 10 repetitions. In the following week the same exercises will be done, but progress will be made to an unstable surface. Finally, in the last week, some kind of manual disturbance by the therapist will be included. The focus of all these exercises will be the motor control of the eccentric contractions of the ankle muscles to increase the strength of this musculature and adequately contribute to the stabilization of the ankle.

Echoguided percutaneous neuromodulation (EPNM):

The experimental group, apart from the exercise program, will receive a session of EPNM in the common peroneal nerve of the affected lower extremity. The EPNM will be applied prior to the exercise program session. 3 interventions will be carried out, in a dosage of 1 per week. It will be done with the electrostimulator (ES-160 co.).The participant will be placed in a prone position with the foot outside the stretcher. The motor part of the common peroneal nerve that affects the innervation of the superficial peroneal nerve will be searched through an Ultrasound scanner with a high-frequency linear transducer (10 Hz). A dry puncture needle (0.25mmx0.40mm, Barcelona, Spain) will be inserted until it is close to the perineurium and a biphasic square wave electric current will be applied to the needle, with a frequency of 2 Hz, a width of pulse of 250 μsec and a maximum tolerable intensity, in order to cause visible muscle contraction, according to the protocol of other studies. Ten stimulations will be performed with a duration of 10 seconds, with a rest period of 10 seconds between each stimulation. The needle will remain stationary throughout the intervention and the skin will be previously cleaned with isopropyl alcohol and chlorhexidine.

Assessment and monitoring:

The variables under study will be evaluated at 3 different times: pre-intervention measurement, post-intervention (a week after the intervention), medium-term measurement (a month after the intervention).

Adverse effects:

All patients will be asked to report any type of adverse effect they may experience throughout the study and up to one month after completion. An adverse effect is defined as a medium-term sequelae with any symptom perceived as painful or unacceptable by the participant and requiring treatment. As the introduction of the needle in some patients may induce post-treatment discomfort, subjects will be notified to report any incident. The EPNM has adverse effects that are infrequent and not serious, such as post-puncture pain that usually lasts from a few hours to a few days of mild intensity, the possible appearance of a bruise that will be minimized thanks to the use of the ultrasound and with pressure techniques on the area, the irritation of the nerve that will be minimized by the use of the ultrasound again and finally the possibility of infection, for this reason a disinfectant will be used on the area before the technique and gloves of a only use.

The therapeutic exercise program has been subsequently used by other research groups and is very safe because it is an incremental program individually adapted in intensity to each subject. Potential adverse effects are also rare, where the most common may be increased ankle pain, which will be controlled with load adaptation, possible generation of late-onset muscle soreness, which usually has a peak duration of 48 hours and a possible fall with the work of instability and disturbance, which is minimized with the presence of the therapist controlling the session at all times.

Sample size calculation:

The sample size and power calculation were calculated using the G-Power 3.1.9.4 software (Heinrich Heine Düsseldorf University). The calculations have been based on the detection of a mean difference of 8 points (MCID) in each scale of the FAAM, assuming a standard deviation of 6.5, a 2-tailed test, an Alpha level of 0.05 and a desired power. 90% The estimated sample size is 15 participants per group.

Statistical analysis of data:

  1. Descriptive data in mean, range and standard deviation.
  2. Normal distribution/homoscedasticity of the data (See whether the data are parametric or non-parametric).
  3. Comparison of means between two groups (experimental group and placebo control group) using Student's t-test to analyse the differences between the quantitative dependent variables of the study. If the data are non-parametric, the investigators will use the Wilcoxon statistic.
  4. Calculate the effect size of the difference between pre and post on the different variables with the cohen's d calculation. A effect size less than 0.2 will be considered trivial, between 0.2-0.5 low, between 0.5-0.8 moderate and greater than 0.8 high.

Study Type

Interventional

Enrollment (Estimated)

30

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Contact Backup

Study Locations

    • Cantabria
      • Torrelavega, Cantabria, Spain, 39300
        • Escuelas Universitarias Gimbernat
        • Contact:
        • Contact:
        • Principal Investigator:
          • Alberto Nava

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

  • Child
  • Adult
  • Older Adult

Accepts Healthy Volunteers

No

Description

Inclusion Criteria:

  1. History of at least one major ankle sprain. The initial sprain must have occurred at least 12 months prior to study participation, be associated with inflammatory symptoms (pain, edema) and have generated at least one day of interruption in physical activity.
  2. The most recent sprain must have occurred at least 3 months prior to study participation.
  3. History in the injured ankle of "dropping the ankle" (at least 2 episodes in the 6 months prior to study participation) and/or repeated sprains (two or more sprains in the same ankle) and/or feelings of instability in activities of daily living or sports (score less than 24 on the Cumberland Ankle Instability Tool (CAIT).
  4. Have a score of less than 75% in three or more categories in the Foot and ankle Outcome Score(FAOS) or a level of less than 90% in activities of daily living or a level of less than 80% in sports activities in the Foot and ankle ability measure (FAAM).
  5. Pain on the Numeric pain rating scale (NPRS) above 3 points out of 10 in their physical activity.

Exclusion Criteria:

  1. History of surgery in either of the two lower extremities that may interfere with the performance of the tests.
  2. History of a fracture in either of the two lower extremities requiring alignment.
  3. Acute injury to the musculoskeletal structures of other lower extremity joints in the previous 3 months, which impact joint integrity and function, resulting in at least one day of loss of physical activity.
  4. Chronic concomitant pathology at the level of the lower extremity (for example: osteoarthritis, vascular disease, neural pathology).
  5. Regular use of analgesic medication that may mask symptoms.
  6. Contraindications of percutaneous puncture and specific to the execution of neuromodulation.
  7. Being receiving physiotherapy or medical treatment during the intervention.
  8. Being pregnant at the start of the study.

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Supportive Care
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: Single

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: Neuromodulation Percutaneous echoguided plus exercise
The experimental group will receive a EPNM in the common peroneal nerve of the affected ankle. . Three interventions will be carried out, in a dosage of 1 per week. Moreover, a 3-week of strength exercises will be carried out with two sessions per week. The strength program includes a protocol for the use of Theraband ® according to that described by Kaminsky et al. Moreover, the participants will have to do a balance exercises program.The EPNM will be applied prior to the exercise program session
This group is taking the EPNM and the exercise program.
Placebo Comparator: Strength program

The strength program includes a Theraband® use protocol as described by Kaminsky et al.

The balance exercise program will consist of performing a series of closed kinetic chain exercises in a weight-bearing standing position that will progress from bilateral to unilateral depending on the acceptance of the load.

This group is taking the exercise program

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
"Foot and ankle ability measure" : FAAM questionnaire
Time Frame: Through study completion, an average of 1 year
It is a Likert scale that consists of 29 items, which have a score from 0 to 4, representing different levels of difficulty, divided into two subscales: activities of daily living (ADL) (21 items) and sports (8 items). items). The values are added to calculate the result of each subscale, 84 points for ADLs and 32 points for sports. For the analysis of the result, the percentage of each subscale is used separately. The test-retest reliability is high, 0.89 for the ADLs and 0.87 for the sports subscale. In fact, the FAAM scale has been shown to be valid for use in patients with ankle instability. It has been suggested that the minimal clinically important difference (MCID) is 8 and 9 points for the ADL subscale and the sports subscale, respectively.
Through study completion, an average of 1 year
"Cumberland Ankle Instability Tool" (CAIT)
Time Frame: Though study completion, an average of 1 year
It has shown to be a valid and reliable tool to assess functional ankle instability. With an intraclass correlation coefficient (ICC) of 0.96, the CAIT scale has demonstrated excellent test-retest reliability. The scale consists of 9 items with a maximum score of 30 points, where the highest results indicate greater stability. It has been suggested that the MCID is 3 or more points.
Though study completion, an average of 1 year
"Numeric Pain Rating Scale" (NPRS)
Time Frame: Through study completion, an average of 1 year
Scale used to assess pain intensity, where 0 is absence of pain and 10 represents maximum pain.There are no data for the MCID in patients with CAI, however it appears that changes between 1.5 and 2.1 points can be considered as the MCID for patients with musculoskeletal pain conditions. This variable will ask about the intensity of pain during sports practice.
Through study completion, an average of 1 year

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
"Side hop test" (SHT)
Time Frame: Though study completion, an average of 1 year
Subjects will be asked to jump laterally and medially between two tape marks that are 30 centimeters apart 10 times as fast as possible. One repetition is considered a lateral jump of 30 cm and return to the starting position. Two series will be carried out and the total time in seconds necessary to complete each of them will be recorded. Time will be recorded by a hand chronometer [ICC 0.84, Standard error measurement(SEM) 2.10 seconds and MDC 5.82 seconds]. The rest between series will be one minute and the lowest time will be used for the study. If a participant falls, puts the contralateral foot on the ground or does not correctly complete the distance of 30 cm between the lines, we consider it invalid and the participant should repeat the test.
Though study completion, an average of 1 year
"Countermovement jump unilateral test" (Unilateral CMJ)
Time Frame: Though study completion, an average of 1 year
For this test, subjects will be asked to perform a vertical jump in a standing position with their hands placed on their pelvis. To do this, there will first be a descent phase where the subjects will flex the knee approximately 90 degrees to then take off as quickly as possible keeping the lower extremity extended during the flight phase. The extremity that we do not value will remain at all times without contact on the ground. There will be 3 repetitions with a 30-second rest between each one where we will stay with the highest value. For the measurement, the My Jump 2 application will be used. The validity of the application has been seen to be high (ICC= 0.997, 95% (Intraclass Coefficient (CI): 0.996-0.998, P < 0.001) with an almost perfect correlation coefficient (r= 0.995, P< 0.001) between the application and the gold standard, which is a force platform.
Though study completion, an average of 1 year
Isometric ankle strength measurement
Time Frame: Though study completion, an average of 1 year
Measurement of three muscle groups: the inverters, the evertors/plantarflexors, the inverters/dorsiflexors. Isometric assessment of the ankle in inversion/dorsiflexion and in eversion/plantarflexion selectively assesses the tibialis anterior and peroneus longus and brevis muscles, respectively. The measurement will be made with the Microfet2 hand pressure dynamometer (Hogan Scientific, LLC, Salt Lake City, USA. (ICC 0.61, 95% CI=0.09-0.81 for dorsiflexors, ICC 0.74, 95% CI= 0.425-0.879 for inverters and ICC 0.84, 95% CI=0.431-0.905 for evertors in the standardized positions to ensure consistency throughout the study. For this variable, 3 measurements of 5 seconds duration will be carried out with 20 seconds of rest between measurements. The value to take into account will be the peak isometric force in kg and will be normalized with the body mass of the subjects.
Though study completion, an average of 1 year
"Star Excursion Balance Test" (SEBT)
Time Frame: Though study completion, an average of 1 year
Is a measure of dynamic balance that has been shown to be valid with moderate to good reliability.The 3 SEBT directions to be measured are the anterior, the posterolateral and the posteromedial, as support to previous investigations (ICC intra 0.85-0.91 and ICC inter 0.99-1) with reported minimum detectable change values (MDC). ) of the normalized reach distance of 5.9% for the anterior direction, 7.8% for the posteromedial direction, and 7.6% for the posterolateral direction. 3 consecutive measurements will be made in each direction. The order of the addresses will be randomized.
Though study completion, an average of 1 year
Range of Motion (ROM)
Time Frame: Though study completion, an average of 1 year
Ankle dorsiflexion range of motion will be measured with the My Rom app (version 3.0.4). Its validity has been demonstrated with respect to the Limit® mini digital inclinometer (r = 0.989, 95% CI = 0.986-0.993) and its reliability (ICC = 0.976, 95% CI = 0.966- 0.983, Dorsiflex app Coefficient of variation(CV) = 5.1 ± 2.3%; Digital inclinometer CV = 4.9 ± 2.5%) during the lunge test under load.
Though study completion, an average of 1 year

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Study Director: Ricardo Ortega, Universidad Rey Juan Carlos

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Estimated)

October 1, 2023

Primary Completion (Estimated)

June 1, 2024

Study Completion (Estimated)

July 1, 2024

Study Registration Dates

First Submitted

June 26, 2023

First Submitted That Met QC Criteria

July 4, 2023

First Posted (Actual)

July 12, 2023

Study Record Updates

Last Update Posted (Actual)

July 12, 2023

Last Update Submitted That Met QC Criteria

July 4, 2023

Last Verified

July 1, 2023

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

YES

IPD Plan Description

All of the individual participant data collected during the trial, after deidentification.

IPD Sharing Time Frame

Immediately following publication. No end date.

IPD Sharing Access Criteria

Anyone who wishes to access the data

IPD Sharing Supporting Information Type

  • STUDY_PROTOCOL
  • SAP
  • ICF
  • ANALYTIC_CODE

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Exercise Therapy

Clinical Trials on Echoguided percutaneous neuromodulation plus exercise

3
Subscribe