Diese Seite wurde automatisch übersetzt und die Genauigkeit der Übersetzung wird nicht garantiert. Bitte wende dich an die englische Version für einen Quelltext.

Modulating Human Cortical Plasticity With Transcranial Electrical Stimulation

28. Januar 2020 aktualisiert von: University of Minnesota
Experience dependent plasticity is a fundamental property of the brain. It allows neural systems to adapt in response to environmental input and subserves the vital functions of learning and memory. Deficits in plasticity are also thought play a causal role in the pathophysiology of several psychiatric disorders, specifically schizophrenia (SZ). Treatments that can probe or even enhance plasticity have potential to be of great clinical and research value. Non-invasive neuromodulation via transcranial direct current stimulation (tDCS) is a promising method for modulating neural plasticity. tDCS delivers low-intensity direct current to cortical areas, thereby facilitating or inhibiting neural activity in a polarity specific manner. Due to its low cost and safety, tDCS has been employed in a wide variety of studies, but much remains unknown regarding its mechanism of action in humans. Experiments carried out in animal and tissue models indicate that tDCS modulates synaptic plasticity mechanisms of long term potentiation and depression (LTP/D), however, these findings have never been translated to human subjects, limiting the practical utility of the research. Recently developed electroencephalographic (EEG) based measures now allow the interrogation of synaptic plasticity non-invasively in humans, making it possible to explore the effects of tDCS on human brain plasticity.

Studienübersicht

Status

Abgeschlossen

Bedingungen

Intervention / Behandlung

Detaillierte Beschreibung

Experience dependent plasticity is a fundamental property of the brain. It allows neural systems to adapt in response to environmental input and subserves the vital functions of learning and memory. Deficits in plasticity are thought play a causal role in the pathophysiology of several psychiatric disorders, including schizophrenia (SZ). Treatments that can probe or even enhance plasticity have potential to be of great clinical value. Non-invasive neuromodulation via transcranial direct current stimulation (tDCS) is a promising method for modulating neural plasticity. tDCS delivers low-intensity direct current to cortical areas, thereby facilitating or inhibiting neural activity in a polarity specific manner. Its positive effects in a wide range of neurological conditions, as well as its tolerability and low cost, have catalyzed the use of tDCS as a clinical tool. However, issues regarding efficacy and variability of outcomes continue to limit the clinical potential of this promising intervention. Investigation of the physiological mechanisms that subserve tDCS effects in humans is needed to inform treatment protocols and enhance efficacy.

Studies in tissue models have revealed that direct current application alters membrane polarization and modulates long-term potentiation and depression (LTP/D), key mechanisms of synaptic plasticity. In Vivo application of tDCS has been shown to modulate LTP and learning in the rat hippocampus and motor cortex. This modulation was shown to be, persistent, input-specific, and N-methyl-D-aspartate receptor (NMDAR) dependent. These works demonstrate the utility of tDCS in modifying plasticity and learning. Given the limitations placed on invasive procedures, investigating the effects of tDCS on plasticity in the human brain has proved to be much more challenging, limiting the translation and thus the practical utility of the basic research. Utilizing modern, non-invasive methods to probe plasticity in humans has the potential to bridge this translational gap.

Recently developed techniques utilizing electroencephalography (EEG) now enable the non-invasive interrogation of plasticity in the human cortex. Clapp et al., (2005) demonstrated the feasibility of inducing LTP in the cortex by rapid presentation of visual or auditory stimuli, observable as changes in sensory evoked potentials recorded from the scalp. This paradigm, termed stimulus specific plasticity (SSP), is a direct parallel to the high frequency electrical stimulation protocols used to elicit LTP in tissue preparations and satisfies the cardinal features of Hebbian plasticity. Thus sensory-induced plasticity is a useful measure of cortical plasticity that is readily translatable from animals to humans. Further, several studies have used SSP to reveal plasticity deficits in SZ and bipolar disorder, demonstrating the clinical relevance of this assay. In addition, because SSP is a functionally relevant manifestation of LTP, it enables assessment of the efficacy of interventions that target plasticity mechanisms, making it the perfect tool to use for evaluating tDCS effects.

The premise of this proposal is based on prior findings demonstrating the modulatory effect of tDCS on synaptic plasticity in animal and tissue models. Due to methodological limitations, very little work has been done to translate these findings to humans. Because the direct effects of tDCS on plasticity in the humans remains uninvestigated, the overarching goal of this proposal is to assess the in vivo efficacy of tDCS in modulating synaptic plasticity in the auditory cortex of the human brain. To this end, the researchers will conduct a study featuring simultaneous tDCS and EEG recording in a both healthy participants and SZ patients. The two separate cohorts will be randomized into either three or two treatment arms (cathodal, anodal, sham - healthy participants / Anodal and Sham - SZ patients). All subjects will undergo EEG recording during presentation of auditory tones to establish baseline auditory evoked potentials (AEP). LTP will be induced by a high frequency presentation (sensory tetanus) of that same tone for 5 min. Stimulation will begin 10 min prior to the LTP induction and will stop at the end the 5 min period. Post-tetanus EEG recordings of AEP's will be compared to baseline AEP's to analyze the impact of tDCS on neural plasticity.

Specific Aim 1: Evaluate the effects of Anodal tDCS vs. Cathodal tDCS vs. Sham on induction of LTP in a healthy population: Significant findings demonstrate that anodal tDCS impacts neuronal function by enhancing LTP induction. Based on these findings in animal and tissue models, it is expected that anodal tDCS will lead to a greater facilitation of LTP than cathodal or sham stimulation Specific Aim 2: Evaluate the efficacy of Anodal tDCS in enhancing induction of LTP in a population of SZ Patients: SZ patients show deficient capacity to support LTP in the auditory cortex. Effect of tDCS are putatively emergent from modulation of NMDAR dependent plasticity mechanisms. Using the SSP paradigm the study will evaluate the efficacy of tDCS in modulating LTP measures. Based on mechanistic work in animals demonstrating the NMDAR dependent action of tDCS, it is expected that anodal tDCS will enhance the induction of LTP compared to sham.

Studientyp

Interventionell

Einschreibung (Tatsächlich)

41

Phase

  • Unzutreffend

Kontakte und Standorte

Dieser Abschnitt enthält die Kontaktdaten derjenigen, die die Studie durchführen, und Informationen darüber, wo diese Studie durchgeführt wird.

Studienorte

    • Minnesota
      • Minneapolis, Minnesota, Vereinigte Staaten, 55414
        • Kelvin O. Lim

Teilnahmekriterien

Forscher suchen nach Personen, die einer bestimmten Beschreibung entsprechen, die als Auswahlkriterien bezeichnet werden. Einige Beispiele für diese Kriterien sind der allgemeine Gesundheitszustand einer Person oder frühere Behandlungen.

Zulassungskriterien

Studienberechtigtes Alter

18 Jahre bis 50 Jahre (Erwachsene)

Akzeptiert gesunde Freiwillige

Ja

Studienberechtigte Geschlechter

Alle

Beschreibung

Inclusion Criteria:

  • Age 18-50
  • No psychiatric medication prescription
  • No clinically significant head injury or neurological disease
  • No dependence in the past 6 month or no substance abuse in the past month
  • Sufficient spoken english to understand testing procedures
  • Ability to give informed consent

Exclusion Criteria:

  • History of transcranial electrical stimulation (tES) or other cortical energy exposure in the past 12 months; including
  • participation in any neuromodulation studies
  • History of seizures or epilepsy
  • History of metallic cranial plates, screws, or implanted device
  • History of craniotomy
  • History of eczema on the scalp
  • History of traumatic brain injury
  • History of mental illness (Healthy group)
  • Diagnosis of bipolar disorder
  • Diagnosis of major depression
  • Unable to give informed consent
  • Hairstyle that is braided in cornrows or in dreadlocks

Studienplan

Dieser Abschnitt enthält Einzelheiten zum Studienplan, einschließlich des Studiendesigns und der Messung der Studieninhalte.

Wie ist die Studie aufgebaut?

Designdetails

  • Hauptzweck: Grundlegende Wissenschaft
  • Zuteilung: Zufällig
  • Interventionsmodell: Crossover-Aufgabe
  • Maskierung: Vervierfachen

Waffen und Interventionen

Teilnehmergruppe / Arm
Intervention / Behandlung
Schein-Komparator: Scheinstimulation
Transcranial electrical stimulator
Experimental: Anodal Stimulation
Transcranial electrical stimulator

Was misst die Studie?

Primäre Ergebnismessungen

Ergebnis Maßnahme
Maßnahmenbeschreibung
Zeitfenster
Change in Amplitude of N100 Component of the Auditory Evoked Potential
Zeitfenster: approximately 1 hour
The amplitude of the N100 component will be averaged across individuals in each group. Grand averages from the two groups will be compared. Outcome is reported as the change from baseline to post-treatment (approximately 1 hour).
approximately 1 hour

Mitarbeiter und Ermittler

Hier finden Sie Personen und Organisationen, die an dieser Studie beteiligt sind.

Studienaufzeichnungsdaten

Diese Daten verfolgen den Fortschritt der Übermittlung von Studienaufzeichnungen und zusammenfassenden Ergebnissen an ClinicalTrials.gov. Studienaufzeichnungen und gemeldete Ergebnisse werden von der National Library of Medicine (NLM) überprüft, um sicherzustellen, dass sie bestimmten Qualitätskontrollstandards entsprechen, bevor sie auf der öffentlichen Website veröffentlicht werden.

Haupttermine studieren

Studienbeginn (Tatsächlich)

1. Dezember 2017

Primärer Abschluss (Tatsächlich)

5. Oktober 2018

Studienabschluss (Tatsächlich)

5. Oktober 2018

Studienanmeldedaten

Zuerst eingereicht

22. März 2017

Zuerst eingereicht, das die QC-Kriterien erfüllt hat

10. April 2017

Zuerst gepostet (Tatsächlich)

14. April 2017

Studienaufzeichnungsaktualisierungen

Letztes Update gepostet (Tatsächlich)

10. Februar 2020

Letztes eingereichtes Update, das die QC-Kriterien erfüllt

28. Januar 2020

Zuletzt verifiziert

1. Januar 2020

Mehr Informationen

Begriffe im Zusammenhang mit dieser Studie

Andere Studien-ID-Nummern

  • 1703M09401

Plan für individuelle Teilnehmerdaten (IPD)

Planen Sie, individuelle Teilnehmerdaten (IPD) zu teilen?

NEIN

Arzneimittel- und Geräteinformationen, Studienunterlagen

Studiert ein von der US-amerikanischen FDA reguliertes Arzneimittelprodukt

Nein

Studiert ein von der US-amerikanischen FDA reguliertes Geräteprodukt

Ja

Diese Informationen wurden ohne Änderungen direkt von der Website clinicaltrials.gov abgerufen. Wenn Sie Ihre Studiendaten ändern, entfernen oder aktualisieren möchten, wenden Sie sich bitte an register@clinicaltrials.gov. Sobald eine Änderung auf clinicaltrials.gov implementiert wird, wird diese automatisch auch auf unserer Website aktualisiert .

Klinische Studien zur tDCS

3
Abonnieren