Esta página se tradujo automáticamente y no se garantiza la precisión de la traducción. por favor refiérase a versión inglesa para un texto fuente.

BoMI for Muscle Control

17 de noviembre de 2020 actualizado por: Ferdinando Mussa-Ivaldi, Shirley Ryan AbilityLab

Body-Machine Interface for Recovering Muscle Control

People with spinal cord injury (SCI), stroke and other neurodegenerative disorders can follow two pathways for regaining independence and quality of life. One is through clinical interventions, including therapeutic exercises. The other is provided by assistive technologies, such as wheelchairs or robotic systems. In this study, we combine these two paths within a single framework by developing a new generation of body-machine interfaces (BoMI) supporting both assistive and rehabilitative goals. In particular, we focus on the recovery of muscle control by including a combination of motion and muscle activity signals in the operation of the BoMI.

Descripción general del estudio

Estado

Reclutamiento

Intervención / Tratamiento

Descripción detallada

When suffering from conditions affecting the central nervous system, such as spinal cord injury (SCI), stroke or neurodegenerative disorders, two pathways are available for regaining independence and quality of life. One way is through clinical interventions, including therapeutic exercises, often in combination with pharmacological agents. The other is provided by assistive technologies, such as wheelchairs or robotic systems. These two approaches have conflicting characteristics. While rehabilitation exercises challenge patients to use the most affected parts of their musculoskeletal apparatus, assistive technologies are typically designed to bypass the disability. This has led to divergent research domains. In both fields there are three major gaps that we plan to address in the investigator's research:

  1. High cost of technology and the limited amount of available hospital-based rehabilitation;
  2. Lack of adaptability of currently available assistive technologies, such as head switches and sip-and puff devices, that require users to overcome a hard learning barrier;
  3. Inadequate criteria for assessment of effectiveness of therapy, with common techniques still relying on subjective approaches that are inadequate considering the current state of biomedical science and technology.

We will address all of these issues by developing a new generation of body-machine interfaces (BoMI) supporting both assistive and rehabilitative goals. BMIs will translate movement signals and muscle activities of the user into control signals for assistive devices and computer systems. State-of-the-art systems for surface electromyography (EMG) and movement recording (IMU) will be integrated through machine learning techniques to facilitate sensorimotor learning while providing the means to promote or reduce the use of targeted muscles. New comprehensive assessment techniques will be developed by integrating standard measure of function - as the manual muscle test - with EMG analysis and non-invasive magnetic brain stimulation (TMS) (Magstim 200 Bistim, Whitland, UK). The development will be organized in three specific aims.

AIM 1: To develop a BMI integrating muscle activities and motion signals for operating external devices and performing rehabilitation exercises. EMG signals derived from multiple muscles in the upper body (e.g. deltoid, pectoralis, trapezius, triceps, etc.) will be integrated with motion signals to generate control signals for external devices (e.g. the coordinates of a cursor on a computer monitor or the speed and direction commands to a powered wheelchair). Both linear (PCA) and nonlinear maps (auto encoder networks) will be explored, although current preliminary evidence suggests that non-linear auto encoders (AE) are likely to better facilitate user learning1.

AIM 2: To enable targeting and modulating recruitment of specific muscles and muscle synergies during the practice of games and functional tasks. To enhance or reduce the role of a muscle or synergy, the output of the BoMI will be modulated in proportion to the deviation of the measured muscle activity from the desired level. The effectiveness of the approach will be tested at different times following training, both by tracking of motions and EMG activities during the performance of selected activities of daily living (ADL) and trough the assessment of muscle responses evoked by non-invasive brain stimulation.

AIM 3: To promote the adoption of the BoMI by facilitating access to its functions by patients and therapists and by performing an observational study on uptake in the DayRehabTM environment. The Shirley Ryan Ability Lab has established a unique environment in which spinal cord injured and stroke outpatients engage in daily rehabilitation exercises in close physical proximity with researchers. We will seize this opportunity to introduce the BoMI in the context of clinical therapy thus allowing a direct assessment of acceptance by therapists and clients.

Tipo de estudio

Intervencionista

Inscripción (Anticipado)

60

Fase

  • No aplica

Contactos y Ubicaciones

Esta sección proporciona los datos de contacto de quienes realizan el estudio e información sobre dónde se lleva a cabo este estudio.

Estudio Contacto

  • Nombre: Ferdinando Mussa-Ivaldi, PhD
  • Número de teléfono: 312 238 1230
  • Correo electrónico: sandro@northwestern.edu

Copia de seguridad de contactos de estudio

  • Nombre: Dalia De Santis, PhD
  • Número de teléfono: 312 238 1650
  • Correo electrónico: ddesantis@sralab.org

Ubicaciones de estudio

    • Illinois
      • Chicago, Illinois, Estados Unidos, 60611
        • Reclutamiento
        • Shirley Ryan Ability Lab
        • Contacto:

Criterios de participación

Los investigadores buscan personas que se ajusten a una determinada descripción, denominada criterio de elegibilidad. Algunos ejemplos de estos criterios son el estado de salud general de una persona o tratamientos previos.

Criterio de elegibilidad

Edades elegibles para estudiar

16 años a 65 años (Niño, Adulto, Adulto Mayor)

Acepta Voluntarios Saludables

No

Géneros elegibles para el estudio

Todos

Descripción

  1. Uninjured individuals

    Inclusion criteria:

    • Ages 18 and up.
    • Ability to follow simple commands, and to respond to questions.

    Exclusion criteria for SCI participants:

    • Does not meet the inclusion criteria.

  2. Individuals with SCI

    Inclusion criteria:

    • Age 16-65
    • Injuries at the C3-6 level, complete (ASIA A), or incomplete (ASIA B and C).
    • Able to follow simple commands
    • Able to speak or respond to questions

    Exclusion criteria:

    • Presence of tremors, spasm and other significant involuntary movements
    • Cognitive impairment
    • Deficit of visuo-spatial orientation
    • Concurrent pressure sores or urinary tract infection
    • Other uncontrolled infection, concurrent cardiovascular disease
    • Sitting tolerance less than one hour
    • Severe hearing or visual deficiency
    • Miss more than six appointments without notification
    • Unable to comply with any of the procedures in the protocol
    • Unable to provide informed consent
  3. Stroke survivors:

Inclusion criteria:

  • Recent stroke (Sub acute to early chronic, between 3 and 12 months from CVA)
  • Age less than 75 (To avoid age-related confounds)
  • Inability to operate a manual wheelchair
  • Available medical records and radiographic information about lesion locations
  • Significant level of hemiparesis (UE Fugl Meyer score between 10 and 30)
  • Presence of pathological muscle synergies in the UE (flexor and/or extensor synergy)

Exclusion criteria:

  • Aphasia, apraxia, cognitive impairment or affective dysfunction that would influence the ability to perform the experiment
  • Inability to provide informed consent
  • Severe spasticity, contracture, shoulder subluxation, or UE pain
  • Severe current medical problems, including rheumatoid arthritis or other orthopaedic impairments restricting finger or wrist movement

Additional exclusion criteria for participants enrolled in TMS procedures

  • Any metal in head with the exception of dental work or any ferromagnetic metal elsewhere in the body. This applies to all metallic hardware such as cochlear implants, or an Internal Pulse Generator or medication pumps, implanted brain electrodes, and peacemaker.
  • Personal history of epilepsy (untreated with one or a few past episodes), or treated patients
  • Vascular, traumatic, tumoral, infectious, or metabolic lesion of the brain, even without history of seizure, and without anticonvulsant medication
  • Administration of drugs that potentially lower seizure threshold [REF], without concomitant administration of anticonvulsant drugs which potentially protect against seizures occurrence
  • Change in dosage for neuro-active medications (Baclophen, Lyrica, Celebrex, Cymbalta, Gabapentin, Naprosyn, Diclofenac, Diazepam, Tramadol, etc) within 2 weeks of any study visit.
  • Skull fractures, skull deficits or concussion within the last 6 months
  • unexplained recurring headaches
  • Sleep deprivation, alcoholism
  • Claustrophobia precluding MRI
  • Pregnancy

Plan de estudios

Esta sección proporciona detalles del plan de estudio, incluido cómo está diseñado el estudio y qué mide el estudio.

¿Cómo está diseñado el estudio?

Detalles de diseño

  • Propósito principal: Otro
  • Asignación: Aleatorizado
  • Modelo Intervencionista: Asignación paralela
  • Enmascaramiento: Único

Armas e Intervenciones

Grupo de participantes/brazo
Intervención / Tratamiento
Experimental: SCI

We will consider two methods for integrating motions and EMG signals:

  1. Direct methods. Signals extracted from the latent EMG space will directly contribute to the control of the external device. We will integrate EMG and IMU in two ways. In a first scenario, EMG and IMU will be given variable weight in the control. In a second scenario (perturbative method) the distance of ongoing muscle patterns from a desired set of strategies will modulate the mapping from body to cursor motions in the form of assistive (i.e. the cursor moves faster towards the target) or resistive (i.e. the cursor slows down) influences on cursor movement.
  2. Indirect Methods. Signals extracted by EMG will modulate the feedback offered to the learner to penalize deviations from desired muscle patterns. When multiple ways to perform a movement are offered by redundancy, (i.e., by the multiplicity of muscles compared to task demands), the brain chooses solutions that minimize noise and uncertainty.
Experimental: STROKE

We will consider two methods for integrating motions and EMG signals:

  1. Direct methods. Signals extracted from the latent EMG space will directly contribute to the control of the external device. We will integrate EMG and IMU in two ways. In a first scenario, EMG and IMU will be given variable weight in the control. In a second scenario (perturbative method) the distance of ongoing muscle patterns from a desired set of strategies will modulate the mapping from body to cursor motions in the form of assistive (i.e. the cursor moves faster towards the target) or resistive (i.e. the cursor slows down) influences on cursor movement.
  2. Indirect Methods. Signals extracted by EMG will modulate the feedback offered to the learner to penalize deviations from desired muscle patterns. When multiple ways to perform a movement are offered by redundancy, (i.e., by the multiplicity of muscles compared to task demands), the brain chooses solutions that minimize noise and uncertainty.
Experimental: UNIMPAIRED

We will consider two methods for integrating motions and EMG signals:

  1. Direct methods. Signals extracted from the latent EMG space will directly contribute to the control of the external device. We will integrate EMG and IMU in two ways. In a first scenario, EMG and IMU will be given variable weight in the control. In a second scenario (perturbative method) the distance of ongoing muscle patterns from a desired set of strategies will modulate the mapping from body to cursor motions in the form of assistive (i.e. the cursor moves faster towards the target) or resistive (i.e. the cursor slows down) influences on cursor movement.
  2. Indirect Methods. Signals extracted by EMG will modulate the feedback offered to the learner to penalize deviations from desired muscle patterns. When multiple ways to perform a movement are offered by redundancy, (i.e., by the multiplicity of muscles compared to task demands), the brain chooses solutions that minimize noise and uncertainty.

¿Qué mide el estudio?

Medidas de resultado primarias

Medida de resultado
Medida Descripción
Periodo de tiempo
Time
Periodo de tiempo: during the intervention
Changing time to task completion
during the intervention

Medidas de resultado secundarias

Medida de resultado
Medida Descripción
Periodo de tiempo
Muscle activity
Periodo de tiempo: baseline, during the procedure, at 1 week follow-up
EMG activity in targeted muscles
baseline, during the procedure, at 1 week follow-up
Cortico spinal connectivity
Periodo de tiempo: baseline, immediately after the intervention, at 1 week follow-up
Motor evoked potentials in selected muscles following TMS stimulation of M1
baseline, immediately after the intervention, at 1 week follow-up

Colaboradores e Investigadores

Aquí es donde encontrará personas y organizaciones involucradas en este estudio.

Investigadores

  • Investigador principal: Ferdinando Mussa-Ivaldi, PhD, Northwestern University

Fechas de registro del estudio

Estas fechas rastrean el progreso del registro del estudio y los envíos de resultados resumidos a ClinicalTrials.gov. Los registros del estudio y los resultados informados son revisados ​​por la Biblioteca Nacional de Medicina (NLM) para asegurarse de que cumplan con los estándares de control de calidad específicos antes de publicarlos en el sitio web público.

Fechas importantes del estudio

Inicio del estudio (Actual)

20 de enero de 2020

Finalización primaria (Anticipado)

1 de agosto de 2024

Finalización del estudio (Anticipado)

1 de agosto de 2024

Fechas de registro del estudio

Enviado por primera vez

21 de agosto de 2020

Primero enviado que cumplió con los criterios de control de calidad

17 de noviembre de 2020

Publicado por primera vez (Actual)

24 de noviembre de 2020

Actualizaciones de registros de estudio

Última actualización publicada (Actual)

24 de noviembre de 2020

Última actualización enviada que cumplió con los criterios de control de calidad

17 de noviembre de 2020

Última verificación

1 de noviembre de 2020

Más información

Términos relacionados con este estudio

Información sobre medicamentos y dispositivos, documentos del estudio

Estudia un producto farmacéutico regulado por la FDA de EE. UU.

No

Estudia un producto de dispositivo regulado por la FDA de EE. UU.

No

Esta información se obtuvo directamente del sitio web clinicaltrials.gov sin cambios. Si tiene alguna solicitud para cambiar, eliminar o actualizar los detalles de su estudio, comuníquese con register@clinicaltrials.gov. Tan pronto como se implemente un cambio en clinicaltrials.gov, también se actualizará automáticamente en nuestro sitio web. .

Ensayos clínicos sobre Motion and Emg Control

3
Suscribir