Automated Applanation Tonometry

November 8, 2023 updated by: Duke University
Goldmann Applanation Tonometry (GAT) is considered the clinical gold standard for eye pressure measurements and yet it is known to be a subjective measurement with limited repeatability and limited portability. The purpose of this study is to develop an automated and objective method for performing applanation tonometry using standard ophthalmic equipment as well as using 2 portable prototypes.

Study Overview

Detailed Description

This is a prospective study. Patients presenting for their scheduled eye appointments will be recruited by verbal communication. Following informed consent, intraocular pressure (IOP) measurements will be made by the following 3 upright methods and 1 supine measurements:

  1. Standard Goldmann Applanation Tonometry (GAT): this is the standard method for IOP measurement in clinical practice. The eye is given topical fluorescein/anesthetic, the GAT prism contacts the eye while the observer looks through the slit lamp machine ocular using blue light illumination to visual the applanation mires. The GAT dial is adjusted until mire alignment is achieved and the IOP measurement is read off the GAT dial.
  2. Fixed force GAT: From the patient perspective, this method will feel identical to the standard GAT. The eye is given topical fluorescein/anesthetic. The GAT dial is set at 1.8 or 2.0, a C-MOS camera is connected to one of the oculars of the slit lamp machine and under blue light illumination, the GAT prism contacts the eye while the CMOS camera makes a video of the mire appearance through the ocular. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter. A similar method using an iPod touch camera has been previously published by this PI (1).
  3. Upright applanating prototype: With this prototype, an applanating prism (custom manufactured with medical grade acrylic in an ISO-13485 certified facility) is attached to a fixed-force spring that creates a force equivalent to 1.8 or 2.0 on the GAT dial. Blue LED lights on the prototype are used to create the blue illumination similar to the blue light used in clinical practice on the slit lamp or Perkins tonometer. A C-MOS camera is aligned with the GAT prism to image the applanation mires. The eye is given topical fluorescein/anesthetic. Like fixed-force GAT, the GAT prism contacts the eye while the CMOS camera makes a video of the mire appearance. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter.

    The order of the above 3 measurements will be randomized.

    The 4th measurement will be made with the patient in the supine position. Here, the subject will be reclined in our standard clinical exam chair until the iris plane is parallel to the ground.

  4. Supine applanating prototype: With this method, a 5 gram clear acrylic cylinder (custom manufactured with medical grade acrylic in an ISO-13485 certified facility) is aligned with the lens of the CMOS camera and the distal tip of the cylinder is illuminated with blue light using an LED similar to the blue light used in clinical practice on the slit lamp or Perkins tonometer. The eye is given topical fluorescein/anesthetic. While the CMOS camera is recording, the 5 gram weight will rest upon the eye and circular applanation mires are recorded. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter. A similar method using an iPhone 6 camera has been previously published by this PI (2). The clear cylinder in this study is the same as that used in this prior study.

Study Type

Interventional

Enrollment (Estimated)

200

Phase

  • Not Applicable

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Contact

Study Locations

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years and older (Adult, Older Adult)

Accepts Healthy Volunteers

No

Description

Inclusion Criteria:

Presenting for a routine eye exam

≥ 18 years of age Able and willing to give consent

Exclusion Criteria:

History of corneal scarring Active infection of the eye

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Diagnostic
  • Allocation: Randomized
  • Interventional Model: Parallel Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Active Comparator: Standard GAT
This is the standard method for IOP measurement in clinical practice
Standard Goldmann Applanation Tonometry (GAT): this is the standard method for IOP measurement in clinical practice
Experimental: Fixed-force GAT
From the patient perspective, this method will feel identical to the standard GAT. The eye is given topical fluorescein/anesthetic. The GAT dial is set at 1.8 or 2.0, a C-MOS camera is connected to one of the oculars of the slit lamp machine and under blue light illumination, the GAT prism contacts the eye while the CMOS camera makes a video of the mire appearance through the ocular. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter
An investigational device similar to standard GAT
Experimental: Upright applanating prototype
With this prototype, an applanating prism (custom manufactured with medical grade acrylic in an ISO-13485 certified facility) is attached to a fixed-force spring that creates a force equivalent to 1.8 or 2.0 on the GAT dial. Blue LED lights on the prototype are used to create the blue illumination similar to the blue light used in clinical practice on the slit lamp or Perkins tonometer. A C-MOS camera is aligned with the GAT prism to image the applanation mires. The eye is given topical fluorescein/anesthetic. Like fixed-force GAT, the GAT prism contacts the eye while the CMOS camera makes a video of the mire appearance. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter
An investigational device, prism used in standard and fixed-force GAT is attached to a portable device
Experimental: Supine Applanating Prototype
With this method, a 5 gram clear acrylic cylinder (custom manufactured with medical grade acrylic in an ISO-13485 certified facility) is aligned with the lens of the CMOS camera and the distal tip of the cylinder is illuminated with blue light using an LED similar to the blue light used in clinical practice on the slit lamp or Perkins tonometer. The eye is given topical fluorescein/anesthetic. While the CMOS camera is recording, the 5 gram weight will rest upon the eye and circular applanation mires are recorded. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter
An investigational device, prism used in standard and fixed-force GAT is attached to a portable device performed in the supine position

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Intraocular pressure (IOP) as measured by standard GAT
Time Frame: Baseline
this is the standard method for IOP measurement in clinical practice. The eye is given topical fluorescein/anesthetic, the GAT prism contacts the eye while the observer looks through the slit lamp machine ocular using blue light illumination to visual the applanation mires. The GAT dial is adjusted until mire alignment is achieved and the IOP measurement is read off the GAT dial.
Baseline
Intraocular pressure (IOP) as measured by fixed force GAT
Time Frame: Baseline
From the patient perspective, this method will feel identical to the standard GAT. The eye is given topical fluorescein/anesthetic. The GAT dial is set at 1.8 or 2.0, a C-MOS camera is connected to one of the oculars of the slit lamp machine and under blue light illumination, the GAT prism contacts the eye while the CMOS camera makes a video of the mire appearance through the ocular.
Baseline
Intraocular pressure as measured by upright applanating
Time Frame: Baseline
With this prototype, an applanating prism (custom manufactured with medical grade acrylic in an ISO-13485 certified facility) is attached to a fixed-force spring that creates a force equivalent to 1.8 or 2.0 on the GAT dial. Blue LED lights on the prototype are used to create the blue illumination similar to the blue light used in clinical practice on the slit lamp or Perkins tonometer. A C-MOS camera is aligned with the GAT prism to image the applanation mires. The eye is given topical fluorescein/anesthetic. Like fixed-force GAT, the GAT prism contacts the eye while the CMOS camera makes a video of the mire appearance. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter.
Baseline
Intraocular pressure as measured by supine applanating protoype
Time Frame: Baseline
With this method, a 5 gram clear acrylic cylinder (custom manufactured with medical grade acrylic in an ISO-13485 certified facility) is aligned with the lens of the CMOS camera and the distal tip of the cylinder is illuminated with blue light using an LED similar to the blue light used in clinical practice on the slit lamp or Perkins tonometer. The eye is given topical fluorescein/anesthetic. While the CMOS camera is recording, the 5 gram weight will rest upon the eye and circular applanation mires are recorded. The diameters of the recorded mire images are measured and the IOP is calculated based on the mire diameter.
Baseline

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Sponsor

Investigators

  • Principal Investigator: Joanne Wen, MD, Duke Eye Center

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

November 21, 2022

Primary Completion (Estimated)

April 1, 2024

Study Completion (Estimated)

April 1, 2024

Study Registration Dates

First Submitted

February 2, 2022

First Submitted That Met QC Criteria

February 2, 2022

First Posted (Actual)

February 11, 2022

Study Record Updates

Last Update Posted (Estimated)

November 9, 2023

Last Update Submitted That Met QC Criteria

November 8, 2023

Last Verified

November 1, 2023

More Information

Terms related to this study

Additional Relevant MeSH Terms

Other Study ID Numbers

  • Pro00106111

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

NO

IPD Plan Description

No Currently, there is no plan to share data with other researchers.

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

No

Studies a U.S. FDA-regulated device product

Yes

product manufactured in and exported from the U.S.

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Glaucoma

Clinical Trials on Standard GAT

3
Subscribe