Esta página foi traduzida automaticamente e a precisão da tradução não é garantida. Por favor, consulte o versão em inglês para um texto fonte.

Prediction of Pulmonary Graft Dysfunction After Double-lung Transplantation (PGD3-AI Study)

19 de novembro de 2020 atualizado por: Hopital Foch

Prediction of Grade 3 Pulmonary Graft Dysfunction After Double-lung Transplantation From Donor, Recipient and Intraoperative Variables

The thundering evolution of lung transplantation management during the past ten years and primary graft dysfunction (PGD) new definition have led to new predictive factors of PGD. Therefore, we retrospectively analyzed a monocentric database using a machine-learning method, to determine the predictive factors of grade 3 PGD (PGD3), defined as a PaO2/FiO2 ratio < 200 or being under extracorporeal membrane oxygenation (ECMO) at postoperative day 3.

We included all double lung transplantation from 2012 to 2019 and excluded multi-organ transplant, cardiopulmonary bypass, or repeated transplantation during the study period for the same patient. Recipient, donor and intraoperative data were added in a gradient boosting algorithm step-by-step according to standard transplantation stages. Dataset will be split randomly as 80% training set and 20% testing set. Relationship between predictive factors and PGD3 will be represented as ShHapley Additive exPlanation (SHAP) values.

Visão geral do estudo

Descrição detalhada

The standardized anesthetic management has been previously described 18 and is detailed on the web site http://anesthesie-foch.org/protocoles-anesthesie/ ("The Foch lung transplant anesthesia protocol").

Continuous variables are presented as median + interquartile range (IQR) or mean and 95%CI, and were compared using independent T-test or Mann-Whitney test. Categorical variables are presented as n (%) and were compared using Chi-squared test or Fisher's exact test. We applied machine learning algorithm to predict 3-day ahead primary graft dysfunction after lung transplant surgery among patients. Machine learning is a branch of artificial intelligence where computer systems can learn from available data and identify patterns with minimal human intervention. Machine learning algorithm tests on data and performance metrics were used to obtain the higher performing algorithm. In this study, we performed a XGBoost (Gradient Boosting) algorithm which was a combination of decisions trees. Each decision tree typically learned from its precursor and passed on the improved function to the following. The weighted combination of these trees provided the prediction.

No particular data transformation has been performed on numerical variables. Categorical variables have been encoded as integer, without any further pre-processing steps. In particular, no specific processing has been performed to deal with missing data. The default behavior of XGBoost has been used. It consists in treating missing data as a specific modality. During the training step of XGBoost models, missing values are treated as other values, and left or right decisions at any branch of a tree are learned by optimizing the outcome.

In order to reflect the sequential nature of this predictive medicine problem, nine steps have been defined to take into account incrementally observed variables acquired at various stages of the surgery.

Step 1: recipient variables Step 2: donor variables Step 3: arrival in the OR Step 4: after anesthetic induction Step 5: during first pneumonectomy Step 6: after first graft implantation Step 7: second pneumonectomy Step 8: second graft implantation Step 9: end surgery status At each of the nine steps, a cross-validation procedure is employed to assess the predictive performance of a machine learning model (XGBoost). One repetition of the cross-validation procedure is designed as follows: the dataset of subjects is randomly split into eight disjoint parts. Successively, the performance of the XGBoost model on each of the eight subset,while training the machine learning model using the remaining seven subsets. For such a repetition, the predictive probability of 3-day ahead primary graft dysfunction for each subject is retained to finally compute the area under ROC (receiving operator curve). To evaluate the variability of the predictive performance of the machine learning model, this cross-validation procedure is repeated fifty times, with randomly chosen subjects partitions. For each of the fifty times eight times nine (repetitions, partitions, surgical steps), hence 3600 models training, a conservative approach has been adopted for XGBoost training, consisting in a unique set of training parameters. These parameters have been chosen to prevent overfitting due to a relatively small number of subjects compared to the number of variables, especially categorical variables, which yield a high degree of freedom. Specifically XGBoost has been trained for 400 rounds (no early stopping), a maximum depth of 5 for each tree, a minimum child weight of 3, and a learning parameter eta equals to 0.0002. Besides those conservative parameters chosen to prevent overfitting, only 40 percents of available columns are selected for tree construction at each round, and 95 % of subjects. These parameters have been kept fixed and chosen to ensure stability of results. Small perturbations around these values could result in local performance improvements, but would not be practically chosen given the size of the dataset.

In order to gain some insights into the most useful variables in terms of predictive power, we then conducted a post-hoc analysis based on the following methodology: at each surgical step, 400 models have been trained for the repeated cross-validation procedure. For each model, we retain the rank of each variable as given by the variable importance procedure of XGBoost. The average rank of each variable for each step is then computed by averaging the ranks obtained by variables for each of the 400 models. At step 9, variables are ordered based on their average rank (increasing average ranks). They are then incrementally used as input of a new cross-validation procedure (repeated 20 times).

Tipo de estudo

Observacional

Inscrição (Real)

478

Critérios de participação

Os pesquisadores procuram pessoas que se encaixem em uma determinada descrição, chamada de critérios de elegibilidade. Alguns exemplos desses critérios são a condição geral de saúde de uma pessoa ou tratamentos anteriores.

Critérios de elegibilidade

Idades elegíveis para estudo

12 anos e mais velhos (Filho, Adulto, Adulto mais velho)

Aceita Voluntários Saudáveis

Não

Gêneros Elegíveis para o Estudo

Tudo

Método de amostragem

Amostra Não Probabilística

População do estudo

Lung transplanted patients

Descrição

Inclusion Criteria:

  • double-lung transplantation

Exclusion Criteria:

  • multi-organ transplant
  • use of a cardiopulmonary bypass
  • repeated transplantation during the study period for the same patient.

Plano de estudo

Esta seção fornece detalhes do plano de estudo, incluindo como o estudo é projetado e o que o estudo está medindo.

Como o estudo é projetado?

Detalhes do projeto

Coortes e Intervenções

Grupo / Coorte
Intervenção / Tratamento
No grade 3 Pulmonary graft dysfunction at postoperative day 3
patients having not a grade 3 Pulmonary graft dysfunction at postoperative day 3
Grade 3 Pulmonary graft dysfunction at postoperative day 3
patients having a grade 3 Pulmonary graft dysfunction at postoperative day 3

O que o estudo está medindo?

Medidas de resultados primários

Medida de resultado
Descrição da medida
Prazo
risk factors for grade 3 pulmonary graft dysfunction at postoperative day 3
Prazo: 3 days
PaO2/FiO2 ratio < 200 or being under extracorporeal membrane oxygenation (ECMO) at postoperative day 3 due to hypoxemia
3 days

Colaboradores e Investigadores

É aqui que você encontrará pessoas e organizações envolvidas com este estudo.

Patrocinador

Investigadores

  • Diretor de estudo: Elisabeth Hulier Ammar, PhD, Hopital Foch

Datas de registro do estudo

Essas datas acompanham o progresso do registro do estudo e os envios de resumo dos resultados para ClinicalTrials.gov. Os registros do estudo e os resultados relatados são revisados ​​pela National Library of Medicine (NLM) para garantir que atendam aos padrões específicos de controle de qualidade antes de serem publicados no site público.

Datas Principais do Estudo

Início do estudo (Real)

1 de janeiro de 2012

Conclusão Primária (Real)

31 de dezembro de 2019

Conclusão do estudo (Real)

5 de outubro de 2020

Datas de inscrição no estudo

Enviado pela primeira vez

19 de novembro de 2020

Enviado pela primeira vez que atendeu aos critérios de CQ

19 de novembro de 2020

Primeira postagem (Real)

25 de novembro de 2020

Atualizações de registro de estudo

Última Atualização Postada (Real)

25 de novembro de 2020

Última atualização enviada que atendeu aos critérios de controle de qualidade

19 de novembro de 2020

Última verificação

1 de novembro de 2020

Mais Informações

Termos relacionados a este estudo

Outros números de identificação do estudo

  • 1111111111111

Plano para dados de participantes individuais (IPD)

Planeja compartilhar dados de participantes individuais (IPD)?

NÃO

Informações sobre medicamentos e dispositivos, documentos de estudo

Estuda um medicamento regulamentado pela FDA dos EUA

Não

Estuda um produto de dispositivo regulamentado pela FDA dos EUA

Não

Essas informações foram obtidas diretamente do site clinicaltrials.gov sem nenhuma alteração. Se você tiver alguma solicitação para alterar, remover ou atualizar os detalhes do seu estudo, entre em contato com register@clinicaltrials.gov. Assim que uma alteração for implementada em clinicaltrials.gov, ela também será atualizada automaticamente em nosso site .

Ensaios clínicos em Transplante, Pulmão

Ensaios clínicos em Double-lung transplantation

3
Se inscrever