Questa pagina è stata tradotta automaticamente e l'accuratezza della traduzione non è garantita. Si prega di fare riferimento al Versione inglese per un testo di partenza.

Prediction of Pulmonary Graft Dysfunction After Double-lung Transplantation (PGD3-AI Study)

19 novembre 2020 aggiornato da: Hopital Foch

Prediction of Grade 3 Pulmonary Graft Dysfunction After Double-lung Transplantation From Donor, Recipient and Intraoperative Variables

The thundering evolution of lung transplantation management during the past ten years and primary graft dysfunction (PGD) new definition have led to new predictive factors of PGD. Therefore, we retrospectively analyzed a monocentric database using a machine-learning method, to determine the predictive factors of grade 3 PGD (PGD3), defined as a PaO2/FiO2 ratio < 200 or being under extracorporeal membrane oxygenation (ECMO) at postoperative day 3.

We included all double lung transplantation from 2012 to 2019 and excluded multi-organ transplant, cardiopulmonary bypass, or repeated transplantation during the study period for the same patient. Recipient, donor and intraoperative data were added in a gradient boosting algorithm step-by-step according to standard transplantation stages. Dataset will be split randomly as 80% training set and 20% testing set. Relationship between predictive factors and PGD3 will be represented as ShHapley Additive exPlanation (SHAP) values.

Panoramica dello studio

Descrizione dettagliata

The standardized anesthetic management has been previously described 18 and is detailed on the web site http://anesthesie-foch.org/protocoles-anesthesie/ ("The Foch lung transplant anesthesia protocol").

Continuous variables are presented as median + interquartile range (IQR) or mean and 95%CI, and were compared using independent T-test or Mann-Whitney test. Categorical variables are presented as n (%) and were compared using Chi-squared test or Fisher's exact test. We applied machine learning algorithm to predict 3-day ahead primary graft dysfunction after lung transplant surgery among patients. Machine learning is a branch of artificial intelligence where computer systems can learn from available data and identify patterns with minimal human intervention. Machine learning algorithm tests on data and performance metrics were used to obtain the higher performing algorithm. In this study, we performed a XGBoost (Gradient Boosting) algorithm which was a combination of decisions trees. Each decision tree typically learned from its precursor and passed on the improved function to the following. The weighted combination of these trees provided the prediction.

No particular data transformation has been performed on numerical variables. Categorical variables have been encoded as integer, without any further pre-processing steps. In particular, no specific processing has been performed to deal with missing data. The default behavior of XGBoost has been used. It consists in treating missing data as a specific modality. During the training step of XGBoost models, missing values are treated as other values, and left or right decisions at any branch of a tree are learned by optimizing the outcome.

In order to reflect the sequential nature of this predictive medicine problem, nine steps have been defined to take into account incrementally observed variables acquired at various stages of the surgery.

Step 1: recipient variables Step 2: donor variables Step 3: arrival in the OR Step 4: after anesthetic induction Step 5: during first pneumonectomy Step 6: after first graft implantation Step 7: second pneumonectomy Step 8: second graft implantation Step 9: end surgery status At each of the nine steps, a cross-validation procedure is employed to assess the predictive performance of a machine learning model (XGBoost). One repetition of the cross-validation procedure is designed as follows: the dataset of subjects is randomly split into eight disjoint parts. Successively, the performance of the XGBoost model on each of the eight subset,while training the machine learning model using the remaining seven subsets. For such a repetition, the predictive probability of 3-day ahead primary graft dysfunction for each subject is retained to finally compute the area under ROC (receiving operator curve). To evaluate the variability of the predictive performance of the machine learning model, this cross-validation procedure is repeated fifty times, with randomly chosen subjects partitions. For each of the fifty times eight times nine (repetitions, partitions, surgical steps), hence 3600 models training, a conservative approach has been adopted for XGBoost training, consisting in a unique set of training parameters. These parameters have been chosen to prevent overfitting due to a relatively small number of subjects compared to the number of variables, especially categorical variables, which yield a high degree of freedom. Specifically XGBoost has been trained for 400 rounds (no early stopping), a maximum depth of 5 for each tree, a minimum child weight of 3, and a learning parameter eta equals to 0.0002. Besides those conservative parameters chosen to prevent overfitting, only 40 percents of available columns are selected for tree construction at each round, and 95 % of subjects. These parameters have been kept fixed and chosen to ensure stability of results. Small perturbations around these values could result in local performance improvements, but would not be practically chosen given the size of the dataset.

In order to gain some insights into the most useful variables in terms of predictive power, we then conducted a post-hoc analysis based on the following methodology: at each surgical step, 400 models have been trained for the repeated cross-validation procedure. For each model, we retain the rank of each variable as given by the variable importance procedure of XGBoost. The average rank of each variable for each step is then computed by averaging the ranks obtained by variables for each of the 400 models. At step 9, variables are ordered based on their average rank (increasing average ranks). They are then incrementally used as input of a new cross-validation procedure (repeated 20 times).

Tipo di studio

Osservativo

Iscrizione (Effettivo)

478

Criteri di partecipazione

I ricercatori cercano persone che corrispondano a una certa descrizione, chiamata criteri di ammissibilità. Alcuni esempi di questi criteri sono le condizioni generali di salute di una persona o trattamenti precedenti.

Criteri di ammissibilità

Età idonea allo studio

12 anni e precedenti (Bambino, Adulto, Adulto più anziano)

Accetta volontari sani

No

Sessi ammissibili allo studio

Tutto

Metodo di campionamento

Campione non probabilistico

Popolazione di studio

Lung transplanted patients

Descrizione

Inclusion Criteria:

  • double-lung transplantation

Exclusion Criteria:

  • multi-organ transplant
  • use of a cardiopulmonary bypass
  • repeated transplantation during the study period for the same patient.

Piano di studio

Questa sezione fornisce i dettagli del piano di studio, compreso il modo in cui lo studio è progettato e ciò che lo studio sta misurando.

Come è strutturato lo studio?

Dettagli di progettazione

Coorti e interventi

Gruppo / Coorte
Intervento / Trattamento
No grade 3 Pulmonary graft dysfunction at postoperative day 3
patients having not a grade 3 Pulmonary graft dysfunction at postoperative day 3
Grade 3 Pulmonary graft dysfunction at postoperative day 3
patients having a grade 3 Pulmonary graft dysfunction at postoperative day 3

Cosa sta misurando lo studio?

Misure di risultato primarie

Misura del risultato
Misura Descrizione
Lasso di tempo
risk factors for grade 3 pulmonary graft dysfunction at postoperative day 3
Lasso di tempo: 3 days
PaO2/FiO2 ratio < 200 or being under extracorporeal membrane oxygenation (ECMO) at postoperative day 3 due to hypoxemia
3 days

Collaboratori e investigatori

Qui è dove troverai le persone e le organizzazioni coinvolte in questo studio.

Sponsor

Investigatori

  • Direttore dello studio: Elisabeth Hulier Ammar, PhD, Hopital Foch

Studiare le date dei record

Queste date tengono traccia dell'avanzamento della registrazione dello studio e dell'invio dei risultati di sintesi a ClinicalTrials.gov. I record degli studi e i risultati riportati vengono esaminati dalla National Library of Medicine (NLM) per assicurarsi che soddisfino specifici standard di controllo della qualità prima di essere pubblicati sul sito Web pubblico.

Studia le date principali

Inizio studio (Effettivo)

1 gennaio 2012

Completamento primario (Effettivo)

31 dicembre 2019

Completamento dello studio (Effettivo)

5 ottobre 2020

Date di iscrizione allo studio

Primo inviato

19 novembre 2020

Primo inviato che soddisfa i criteri di controllo qualità

19 novembre 2020

Primo Inserito (Effettivo)

25 novembre 2020

Aggiornamenti dei record di studio

Ultimo aggiornamento pubblicato (Effettivo)

25 novembre 2020

Ultimo aggiornamento inviato che soddisfa i criteri QC

19 novembre 2020

Ultimo verificato

1 novembre 2020

Maggiori informazioni

Termini relativi a questo studio

Altri numeri di identificazione dello studio

  • 1111111111111

Piano per i dati dei singoli partecipanti (IPD)

Hai intenzione di condividere i dati dei singoli partecipanti (IPD)?

NO

Informazioni su farmaci e dispositivi, documenti di studio

Studia un prodotto farmaceutico regolamentato dalla FDA degli Stati Uniti

No

Studia un dispositivo regolamentato dalla FDA degli Stati Uniti

No

Queste informazioni sono state recuperate direttamente dal sito web clinicaltrials.gov senza alcuna modifica. In caso di richieste di modifica, rimozione o aggiornamento dei dettagli dello studio, contattare register@clinicaltrials.gov. Non appena verrà implementata una modifica su clinicaltrials.gov, questa verrà aggiornata automaticamente anche sul nostro sito web .

Prove cliniche su Trapianto, Polmone

Prove cliniche su Double-lung transplantation

3
Sottoscrivi