Copeptin in Adolescent Participants With Type 1 Diabetes and Early Renal Hemodynamic Function (CASPER)

March 23, 2022 updated by: University of Colorado, Denver

CASPER Study: Copeptin in Adolescent Participants With Type 1 Diabetes and Early Renal Hemodynamic Function

Over 1.25 million Americans have type 1 diabetes (T1D), increasing risk for early death from cardiorenal disease. The strongest risk factor for cardiovascular disease (CVD) and mortality in T1D is diabetic kidney disease (DKD). Current treatments, such as control of hyperglycemia and hypertension, are beneficial, but only partially protect against DKD.

Hyperfiltration is common in youth with T1D, and predicts progressive DKD. Hyperfiltration is also associated with early changes in intrarenal hemodynamic function, including increased renal plasma flow (RPF) and glomerular pressure. Intrarenal hemodynamic function is strongly influenced by the renin-angiotensin-aldosterone system (RAAS), which is also considered a key player in the pathogenesis of DKD. Preliminary data demonstrate differences in intrarenal hemodynamic function and RAAS activation in early and advanced DKD in T1D. However, the pathophysiology contributing to the differences observed in RAAS activation and intrarenal hemodynamic function in T1D are poorly defined Animal research demonstrates that arginine vasopressin (AVP) acts directly to modify intrarenal hemodynamic function, but also indirectly by activating RAAS. Preliminary data suggest that elevated copeptin, a marker of AVP, which predicts DKD in T1D adults, independently of other risk factors. However, no human studies to date have examined how copeptin relates to intrarenal hemodynamic function in early DKD in T1D. A better understanding of this relationship is critical to inform development of new therapies targeting the AVP system in T1D. Accordingly, in this study, the investigators propose to define the relationship between copeptin and intrarenal hemodynamics in early stages of DKD, by studying copeptin levels, renal plasma flow, and glomerular filtration in youth (n=50) aged 12-21 y with T1D duration < 10 y.

Study Overview

Study Type

Interventional

Enrollment (Actual)

50

Phase

  • Phase 2
  • Phase 1

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Colorado
      • Aurora, Colorado, United States, 80045
        • Children's Hospital Colorado

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

12 years to 21 years (Child, Adult)

Accepts Healthy Volunteers

No

Genders Eligible for Study

All

Description

Inclusion Criteria:

  • Antibody+ T1D with <10 yr duration
  • Age 12-21 years
  • BMI ≥ 5%ile
  • Weight<350 lbs and > 57 lbs.
  • No anemia
  • HbA1c <12%

Exclusion Criteria:

  • Severe illness, recent diabetic ketoacidosis (DKA)
  • Estimated Glomerular Filtration Rate (eGFR) <60ml/min/1.73m2 or creatinine > 1.5mg/dl or history of ACR≥300mg/g
  • Anemia or allergy to shellfish or iodine
  • Pregnancy or nursing
  • MRI scanning contraindications (claustrophobia, implantable devices, >350 lbs)
  • Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), diuretics, sodium-glucose co-transport (SGLT) 2 or 1 blockers, daily NSAIDs or aspirin, sulfonamides, procaine, thiazolsulfone or probenecid, atypical antipsychotics and steroids

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

  • Primary Purpose: Diagnostic
  • Allocation: N/A
  • Interventional Model: Single Group Assignment
  • Masking: None (Open Label)

Arms and Interventions

Participant Group / Arm
Intervention / Treatment
Other: Clinical Investigation
All participants will undergo assessment of Glomerular Filtration Rate, (Iohexol Inj 300 mg/mL) and Effective Renal Plasma Flow (Aminohippurate Sodium Inj 20%). In addition, participants will undergo imaging assessment that includes Dual X-Ray Absorptiometry (DXA), renal Blood Oxygen Level Dependent (BOLD) and Arterial Spin Labeling (ASL) MRI.
Diagnostic aid/agent used to measure effective renal plasma flow (ERPF)
Other Names:
  • Aminohippuric acid
  • Para-aminohippurate (PAH)
  • Sodium 4-amino hippurate (PAH) inj 20% 2g/10 mL
Diagnostic aid/agent used to measure glomerular filtration rate (GFR)
Other Names:
  • omnipaque 300

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Copeptin Levels
Time Frame: 4 hours
Measured by fasting blood draw; Copeptin will be measured by ultrasensitive assays on KRYPTOR Compact Plus analyzers using the commercial sandwich immunoluminometric assays (Thermo Fisher Scientific, Waltham, MA). The copeptin assay has a lower limit of detection of 0.9 pmol/L, and a sensitivity of <2pmol/L. Elevated copeptin will be defined as >13pmol/L, which is >97.5th percentile for healthy adults (68).
4 hours
Effective Renal Plasma Flow (ERPF)
Time Frame: 4 hours
Measured by para-aminohippurate (PAH) clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior PAH infusion. PAH (2 g/10 mL, prepared at the University of Minnesota, with a dose of [weight in kg]/75 × 4.2 mL; IND #140129) was given slowly over 5 min followed by a continuous infusion of 8 mL of PAH and 42 mL of normal saline at a rate of 24 mL/h for 2 h. After an equilibration period, blood was drawn at 90 and 120 min, and ERPF was calculated as PAH clearance divided by the estimated extraction ratio of PAH, which varies by the level of GFR (13). We report absolute ERPF (mL/min) in the main analyses because the practice of indexing ERPF for body surface underestimates hyperperfusion, and body surface area (BSA) calculations introduce noise into the clearance measurements.
4 hours
Glomerular Filtration Rate (GFR)
Time Frame: 4 hours
Measured by iohexol clearance; An intravenous (IV) line was placed, and participants were asked to empty their bladders. Spot plasma and urine samples were collected prior to iohexol infusion. Iohexol was administered through bolus IV injection (5 mL of 300 mg/mL; Omnipaque 300, GE Healthcare). An equilibration period of 120 min was used and blood collections for iohexol plasma disappearance were drawn at +120, +150, +180, +210, +240 min (11). Because the Brøchner-Mortensen equation underestimates high values of GFR, the Jødal-Brøchner-Mortensen equation was used to calculate the GFR (12). We report absolute GFR (mL/min) in the main analyses because the practice of indexing GFR for body surface underestimates hyperfiltration, and body surface area (BSA) calculations introduce noise into the clearance measurements.
4 hours

Secondary Outcome Measures

Outcome Measure
Measure Description
Time Frame
Renal Perfusion
Time Frame: 10 min
Measured by Arterial Spin Labeling (ASL) MRI; ASL MRI: ROI analysis will be used to estimate (delta) M (difference in signal intensity between non-selective and selective inversion images). Using the same ROI, M0 will be estimated from the proton density image. T1 measurements from the same ROI will be obtained by fitting the signal intensity vs. inversion time data as described previously (104) using XLFit (ID Business Solutions Ltd., UK) or T1 maps created using MRI Mapper (Beth Israel Deaconess Medical Center, Boston). Partition coefficient will be assumed to be 0.8 ml/gm (105, 106). These values will then be used to estimate regional blood flow.
10 min
Renal Oxygenation
Time Frame: 60 min
Measured by Blood Oxygen Level Dependent (BOLD) MRI; Regions of interest (ROI) analysis for BOLD MRI will be performed on a Leonardo Workstation (Siemens Medical Systems, Germany). Typically, 1 to 3 regions in each, cortex and medulla, per kidney per slice will be defined leading to a total of about 10 ROIs per region (cortex and medulla) per subject. The mean and standard deviation of these 10 measurements will be used a R2* measurement for the region, for the subject and for that time point. These data are used to calculate kidney oxygen availability (R2*), which is the BOLD-MRI outcome.
60 min

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start (Actual)

October 1, 2018

Primary Completion (Actual)

October 19, 2019

Study Completion (Actual)

August 1, 2021

Study Registration Dates

First Submitted

August 1, 2018

First Submitted That Met QC Criteria

August 1, 2018

First Posted (Actual)

August 7, 2018

Study Record Updates

Last Update Posted (Actual)

April 20, 2022

Last Update Submitted That Met QC Criteria

March 23, 2022

Last Verified

March 1, 2022

More Information

Terms related to this study

Plan for Individual participant data (IPD)

Plan to Share Individual Participant Data (IPD)?

Undecided

Drug and device information, study documents

Studies a U.S. FDA-regulated drug product

Yes

Studies a U.S. FDA-regulated device product

No

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Diabetes Mellitus, Type 1

Clinical Trials on Aminohippurate Sodium Inj 20%

3
Subscribe