Integrated Diagnostics Characterization of Right Ventricular Diastolic Flow Dynamics in Pulmonary Arterial Hypertension

October 19, 2020 updated by: National Jewish Health
Pulmonary hypertension (PH) is a condition in which high blood pressure develops in the lungs and right side of the heart. People with PH suffer from shortness of breath, chest pain, heart failure, heart rhythm problems, and fainting. PH is diagnosed using a test called a cardiac catheterization where blood pressure is measured directly using a tube placed in the right side of the heart and lung arteries. Because a cardiac catheterization is invasive, researchers are investigating ways to diagnose PH using imaging tests that are not invasive. The study will evaluate whether or not a magnetic resonance image (MRI) of the heart, and blood tests can detect PH.

Study Overview

Status

Completed

Detailed Description

The adaptive changes that result from chronic pressure overload in pulmonary arterial hypertension (PAH) lead to myocardial hypertrophy, stiffening, and right ventricular diastolic dysfunction (RVDD). A growing body of evidence has identified RVDD as an important prognostic indicator for PAH.1 Diagnosis of RVDD relies upon 1) elevated brain natriuretic peptide (BNP), which correctly identifies RVDD in the PAH population but remains a nonspecific marker, and 2) echocardiography, as defined by reduced early (E') tricuspid annular velocity, elevated ratio of early filling tricuspid inflow peak velocity to E' (E/E'), and prolonged relaxation time (RT). 2 However, the right ventricle's unusual anatomy and susceptibility to altered loading conditions have raised questions about the ability of echo indices to accurately reflect complex diastolic mechanics. The development of a robust non-invasive application for RV diastolic assessment may improve the understanding, diagnosis, and management of RVDD and therefore PAH.

Similar to the left ventricle, rheological analysis of right ventricular inflow in canine models has identified the formation of diastolic vortex rings.3 Vortex rings develop from high velocity diastolic jet emanating from the valvular annulus interacting with stationary blood in the ventricle. Vortex ring formation time has successfully identified left ventricular diastolic dysfunction.4 Numerous additional vortex properties exist, including depth, transverse position, length, width, and sphericity index, that offer novel and robust diastolic flow characterization with the potential incremental diagnostic value to existing echo parameters. Vortex formation and analysis in RVDD has yet to be studied.

Vortex measurement can be performed using dimensional (4D) (time-resolved three-dimensional) cardiac MRI (CMR). 4D CMR captures the complex multidirectional nature of flow through volumetric rendering of fluid vectors and velocity using blood flow streamlines and particle traces. In contrast to echocardiography, 4D CMR is not limited by poor acoustic windows commonly seen in patients with respiratory disease and PAH, making it an ideal noninvasive modality for vortex characterization.

The biological adaptations resulting from chronic pressure overload in PAH might be correlated to the blood levels of different categories of biomarkers. They might play a role in the screening, diagnosis, monitoring or prognosis of patients with PAH and RVDD. Special mention can be made to the natriuretic peptides (BNP, NT-proBNP) based on their clinical value as hemodynamic markers in congestive heart failure. Cardiac markers of necrosis (asTroponin-I, and particularly the high sensitivity assays) might identify even minimal areas with such myocardial cell damage. The biological evaluation of cardiac fibrosis, might be assessed by markers of fibrosis, as Hyaluronic acid (HA), Procollagen III amino terminal peptide (PIIINP) and Tissue inhibitor of metalloproteinase 1 (TIMP-1). The potential role of the inflammatory component, can be evaluated with MPO (myeloperoxidase, pro-inflammatory enzyme), IL-6 (pro-inflammatory cytokine), C-RP (C-reactive protein)

The present study aims to:

  1. Characterize and quantify RV vortex flow in normal subjects and PAH subjects with RVDD
  2. Assess the feasibility of 4D CMR right ventricular diastolic vortex analysis for diagnosis of RVDD Hypothesis: 4D CMR vortex analysis accurately identifies RVDD, and the information provided by biomarkers helps by adding diagnostic information.

Study Type

Observational

Enrollment (Actual)

25

Contacts and Locations

This section provides the contact details for those conducting the study, and information on where this study is being conducted.

Study Locations

    • Colorado
      • Denver, Colorado, United States, 80206
        • National Jewish Health

Participation Criteria

Researchers look for people who fit a certain description, called eligibility criteria. Some examples of these criteria are a person's general health condition or prior treatments.

Eligibility Criteria

Ages Eligible for Study

18 years to 75 years (Adult, Older Adult)

Accepts Healthy Volunteers

Yes

Genders Eligible for Study

All

Sampling Method

Non-Probability Sample

Study Population

specialist clinics community

Description

Inclusion Criteria:

  • previous diagnosis of PH by right heart catheterization
  • RV diastolic dysfunction by echo
  • normal RV systolic function
  • age 18-75 years old
  • no contraindication to MRI

Exclusion Criteria:

  • absence of PH
  • absence of RV diastolic dysfunction by echo
  • RV systolic dysfunction
  • age < 18 years
  • contraindication to MRI
  • pregnancy

Study Plan

This section provides details of the study plan, including how the study is designed and what the study is measuring.

How is the study designed?

Design Details

Cohorts and Interventions

Group / Cohort
Pulmonary Hypertension
Previous diagnosis of PH by right heart catheterization
Healthy Controls
Healthy controls without lung/heart conditions

What is the study measuring?

Primary Outcome Measures

Outcome Measure
Time Frame
Correlation between RV diastolic function and vorticity
Time Frame: 2 years
2 years

Collaborators and Investigators

This is where you will find people and organizations involved with this study.

Investigators

  • Principal Investigator: Brett Fenster, MD, FACC, FACP, National Jewish Health

Publications and helpful links

The person responsible for entering information about the study voluntarily provides these publications. These may be about anything related to the study.

General Publications

Study record dates

These dates track the progress of study record and summary results submissions to ClinicalTrials.gov. Study records and reported results are reviewed by the National Library of Medicine (NLM) to make sure they meet specific quality control standards before being posted on the public website.

Study Major Dates

Study Start

November 1, 2010

Primary Completion (Actual)

October 1, 2013

Study Completion (Actual)

October 1, 2013

Study Registration Dates

First Submitted

December 12, 2011

First Submitted That Met QC Criteria

December 13, 2011

First Posted (Estimate)

December 14, 2011

Study Record Updates

Last Update Posted (Actual)

October 22, 2020

Last Update Submitted That Met QC Criteria

October 19, 2020

Last Verified

October 1, 2020

More Information

This information was retrieved directly from the website clinicaltrials.gov without any changes. If you have any requests to change, remove or update your study details, please contact register@clinicaltrials.gov. As soon as a change is implemented on clinicaltrials.gov, this will be updated automatically on our website as well.

Clinical Trials on Pulmonary Hypertension

3
Subscribe